Theoretical study of graded bandgap CZTSSe solar cells with two absorber layers

Abstract

In this work, new Cu2ZnSn(S1−x, Sex)4 (CZTSSe) solar cells consisting of two absorber layers with constant and graded bandgaps are proposed. CZTS and CZTSe are used as the constant bandgap absorbing layers of the first and second proposed cells, respectively. To validate the simulations, first, a graded bandgap CZTSSe-based cell containing AZO/ZnO/CdS/CZTSSe/MoSe2/Mo layers as the basic structure is investigated, revealing that the results are in good agreement with previous experimental data. The impact of varying acceptor doping concentration and temperature on the performance of proposed cells is investigated. The optimum thicknesses of the absorber layers are obtained in all cases. After optimization, maximum efficiencies of 20.99% and 21.37% are obtained for the first and second cells respectively which are significantly greater than the basic structure. The proposed structures provide higher open circuit voltage and short circuit current, compared to the basic structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adewoyin, A.D., Olopade, M.A., Chendoc, M.: Prediction and optimization of the performance characteristics of CZTS thin film solar cell using bandgap grading. Opt. Quant. Electron. 49, 1–13 (2017)

    Article  Google Scholar 

  2. Altamura, G., Wang, M., Choy, K.-L.: Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S, Se)4 solar cells. Sci. Rep. 6, 1–9 (2016)

    Article  Google Scholar 

  3. Amiri, S., Dehghani, S.: Design of highly efficient CZTS/CZTSe tandem solar cells. J. Electron. Mater. 49, 2164–2172 (2020)

    ADS  Article  Google Scholar 

  4. Burgelman, M., Decock, K., Niemegeers, A., Verschraegen, J., Degrave, S.: SCAPS Manual. University Gent (2018)

  5. Cao, Y., Denny, M.S., Jonathan, J., Caspar, V., Farneth, W.E., Guo, Q., Ionkin, A.S., Johnson, L.K., Lu, M., Malajovich, I., Radu, D., Rosenfeld, H.D., Choudhury, K.R., Wu, W.: High-efficiency solution-processed Cu2ZnSn(S, Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134, 15644–15647 (2012)

    Article  Google Scholar 

  6. Chen, S., Walsh, A., Gong, X.-G., Wei, S.-H.: Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013)

    Article  Google Scholar 

  7. Cherouana, A., Labbani, R.: Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl. Surf. Sci. 424, 251–255 (2017)

    ADS  Article  Google Scholar 

  8. Ferhati, H., Djeffal, F.: Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. 76, 393–399 (2018)

    ADS  Article  Google Scholar 

  9. Gershon, T., Lee, Y.S., Mankad, R., Gunawan, O., Gokmen, T., Bishop, D., McCandless, B., Guha, S.: The impact of sodium on the sub-bandgap states in CZTSe and CZTS. Appl. Phys. Lett. 106, 1–5 (2015)

    Article  Google Scholar 

  10. Gupta, G.K., Dixit, A.: Theoretical studies of single and tandem Cu2ZnSn(S/Se)4 junction solar cells for enhanced efficiency. Opt. Mater. 82, 11–20 (2018)

    ADS  Article  Google Scholar 

  11. Haass, S.G., Andres, C., Figi, R., Schreiner, C., Bürki, M., Romanyuk, Y.E., Tiwari, A.N.: Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells. Adv. Energy Mater. 8, 1–9 (2018)

    Article  Google Scholar 

  12. Hironiwa, D., Murata, M., Ashida, N., Tang, Z., Minemoto, T.: Simulation of optimum band-gap grading profile of Cu2ZnSn(S, Se)4 solar cells with different optical and defect properties. Jpn. J. Appl. Phys. 53, 1–9 (2014)

    Google Scholar 

  13. Hwang, D., Ko, B.S., Jeon, D.H., Kang, J.K., Sung, S.J., Yang, K.J., Nam, D., Cho, S., Cheong, H., Kim, D.H.: Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S, Se)4 thin films. Sol. Energy Mater. Sol. Cells 161, 162–169 (2017)

    Article  Google Scholar 

  14. Jhuma, F.A., Shaily, M.Z., Rashid, M.J.: Towards high efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8, 6–13 (2019)

    Article  Google Scholar 

  15. Kato, T., Sakai, N., Sugimoto, H.: Efficiency improvement of Cu2ZnSn(S,Se)4 submodule with graded bandgap and reduced backside ZnS segregation. In: IEEE 40th Photovoltaic Specialist Conference (PVSC) (2014)

  16. Kim, I., Kim, K., Oh, Y., Woo, K., Cao, G., Jeong, S., Moon, J.: Bandgap-graded Cu2Zn (Sn1−xGex) S4 thin-film solar cells derived from metal chalcogenide complex ligand capped nanocrystals. Chem. Mater. 26, 3957–3965 (2014)

    Article  Google Scholar 

  17. Meher, S.R., Balakrishnan, L., Alex, Z.C.: Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)

    ADS  Article  Google Scholar 

  18. Minbashi, M., Omrani, M.K., Memarian, N., Kim, D.H.: Comparison of theoretical and experimental results for Band-Gap-Graded CZTSSe Solar Cell. Curr. Appl. Phys. 17, 1238–1243 (2017)

    ADS  Article  Google Scholar 

  19. Mohammadnejad, S., Prashkouh, A.B.: CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer. Appl. Phys. A 123, 1–9 (2017)

    Article  Google Scholar 

  20. Patel, C., Ray, A.: Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—a numerical simulation approach and comparison to experiments. Physica B 407, 4391–4397 (2014)

    ADS  Article  Google Scholar 

  21. Romanyuk, Y.E., Haass, S.G., Giraldo, S., Placidi, M., Tiwari, D., Fermin, D.J., Hao, X., Xin, H., Schnabel, T., Kauk-Kuusik, M.: Doping and alloying of kesterites. J. Phys. Energy 1, 1–22 (2019)

    Article  Google Scholar 

  22. Simya, O.K., Mahaboobbatcha, A., Balachander, K.: Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation. Superlattices Microstruct. 92, 285–293 (2016)

    ADS  Article  Google Scholar 

  23. Song, X., Ji, X., Li, M., Lin, W., Luo, X., Zhang, H.: A review on development prospect of CZTS based thin film solar cells. Int. J. Photoenergy 2014, 1–11 (2014)

    Article  Google Scholar 

  24. Vallisree, S., Thangavel, R., Lenka, T.R.: Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. J. Mater. Sci. Mater. Electron. 29, 7262–7272 (2018)

    Article  Google Scholar 

  25. Wanda, M.D., Ouedraogo, S., Tchoffo, F., Zougmore, F., Ndjaka, J.M.B.: Numerical investigations and analysis of Cu2ZnSnS4 based solar cells by SCAPS-1D. Int. J. Photoenergy 2016, 1–9 (2016)

    Article  Google Scholar 

  26. Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1–5 (2014)

    Article  Google Scholar 

  27. Woo, K., Kim, Y., Yang, W., Kim, K., Kim, I., Oh, Y., Kim, J.Y., Moon, J.: Band-gap-graded Cu2ZnSn (S1-x, Sex)4 solar cells fabricated by an ethanol-based particulate precursor ink route. Sci. Rep. 3, 1–7 (2013)

    Google Scholar 

  28. Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., Pu, A., He, M., Liu, F., Eder, K., Yang, L., Cairney, Y.M., Daukes, N.J., Hameiri, Z., Stride, J.A., Chen, S., Green, M.A., Hao, X.: Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764–772 (2018)

    ADS  Article  Google Scholar 

  29. Yang, K.J., Son, D.H., Sung, S.J., Sim, J.H., Kim, Y., Park, S.N., Jeon, D.H., Kim, J., Hwang, D.K., Jeon, C.W., Nam, D., Cheong, H., Kang, J.K., Kim, D.H.: A band-gap-graded CZTSSe solar cell with 12.3% efficiency. J. Mater. Chem. A 4, 10151–10158 (2016)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sajjad Dehghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amiri, S., Dehghani, S. & Safaiee, R. Theoretical study of graded bandgap CZTSSe solar cells with two absorber layers. Opt Quant Electron 52, 323 (2020). https://doi.org/10.1007/s11082-020-02441-2

Download citation

Keywords

  • Bandgap grading
  • CZTSSe
  • SCAPS-1D
  • Thin-film solar cell