150 km φ-OTDR sensor based on erbium and Raman amplifiers

Abstract

Extending the sensing range for monitoring the railways, pipelines, borders, long structures, etc., has great importance in distributed fiber optic sensors development. Phase-sensitive optical time-domain reflectometry (φ-OTDR) sensors are the best candidate for this purpose. Optical fiber amplifiers in φ-OTDR sensors have increased the sensing range. A φ-OTDR sensor using combination of Erbium and Raman amplifiers has been demonstrated with a sensing range of 128 km. In this paper, we presented a disturbance monitoring up to 150 km utilizing Erbium and bi-directional Raman amplifications. In the proposed sensor, disturbances at 30, 70 and 120 km distances are applied and Rayleigh backscattered signals are investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ajoy, G., Thyagarajan, K.: An introduction to fiber optics. Cambridge University Press, Oxford (1998)

    Google Scholar 

  2. Beninca, M.O.L., Pontes Maria, J., Marcelo, E.V.S.: Design of a wideband hybrid EDFA with a fiber Raman amplifier. In: Microwave and Optoelectronics Conference (IMOC) SBMO/IEEE MTT-S International IEEE (2011)

  3. Beninca, M.O.L., Pontes, M.J., Segatto, M.E.V.: Design of a wideband hybrid EDFA with a fiber Raman amplifier. In: Microwave & Optoelectronics Conference (IMOC) 2011 SBMO/IEEE MTT-S International IEEE (2011)

  4. Bromage, J.: Raman amplification for fiber communications systems. IEEE J. Lightwave Technol. 22, 79–93 (2004)

    ADS  Article  Google Scholar 

  5. Chen, X., Xu, C.: Disturbance pattern recognition based on an ALSTM in a long-distance φ-OTDR sensing system. Microw. Opt. Technol. Lett. 62(1), 168–175 (2019)

    Article  Google Scholar 

  6. Cheng, C., Xiao, M.: Optimization of a dual pumped L-band erbium-doped fiber amplifier by genetic algorithm. IEEE J. Lightwave Technol. 24, 3824–3829 (2006)

    ADS  Article  Google Scholar 

  7. Giles, C.R., Desurvire, E.: Modeling erbium-doped fiber amplifiers. IEEE J. Lightwave Technol. 9, 271–283 (1991)

    ADS  Article  Google Scholar 

  8. He, M., Feng, L., Fan, J.: A method for real-time monitoring of running trains using Ф-OTDR and the improved Canny. Optik 184, 356–363 (2019)

    ADS  Article  Google Scholar 

  9. Hoffmann, L. et al: Applications of fibre optic temperature measurement. Estonian J. Eng. 13(4) (2007)

  10. Islam Mohammed, N.: Raman Amplifiers for Telecommunications. Phys. Princ. 8(3), 548–559 (2004)

    Google Scholar 

  11. Kong, Y., et al.: Research on the ϕ-OTDR fiber sensor sensitive for all of the distance. Opt. Commun. 407, 148–152 (2018)

    ADS  Article  Google Scholar 

  12. Liang, T.-C., et al.: Optimum configuration and design of 1480-nm pumped L-band gain-flattened EDFA using conventional erbium-doped fiber. Opt. Commun. 183(1–4), 51–63 (2000)

    ADS  Article  Google Scholar 

  13. Liu, X., Lee, B.: A fast and stable method for Raman amplifier propagation equations. Opt. Express 11, 2163–2176 (2003a)

    ADS  Article  Google Scholar 

  14. Liu, X., Lee, B.: Effective shooting algorithm and its application to fiber amplifiers. Opt. Express 11, 1452–1461 (2003b)

    ADS  Article  Google Scholar 

  15. Liu, X., et al.: Distributed fiber-optic sensors for vibration detection. Sensors. 16(8), 1164–1195 (2016)

    Article  Google Scholar 

  16. Malakzadeh, A., Mansoursamaei, M.: New matrix solution of the phase-correlation technique in a Brillouin dynamic grating sensor. Journal of Optical Technology 85(10), 644–647 (2018)

    Article  Google Scholar 

  17. Malakzadeh, A., Pashaie, R., Mansoursamaei, M.: Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs. Opt. Quant. Electron. 52, 75 (2020)

    Article  Google Scholar 

  18. Mao, Q., et al.: A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber. Opt. Commun. 159(1–3), 149–157 (1999)

    ADS  Article  Google Scholar 

  19. Martini, M.d.M.J., et al.: Analysis of a multi-pump optimization in Raman+EDFA hybrid amplifiers with pump recycling for WDM systems. In: Solid State Lasers and Amplifiers IV and High-Power Lasers Vol 7721 International Society for Optics and Photonics (2010)

  20. Meiqi, R., et al.: Study of φ-OTDR stability for dynamic strain measurement in piezoelectric vibration. Photonic Sensors 6(3), 199–208 (2016)

    Article  Google Scholar 

  21. Merlo, S., et al.: Runways ground monitoring system by phase-sensitive optical-fiber OTDR. Metrology for AeroSpace (MetroAeroSpace) 2017 IEEE International Workshop on IEEE (2017)

  22. Minardo, A., Bernini, R., Zeni, L.: Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise. J. Opt. 18(2), 025601 (2015)

    ADS  Article  Google Scholar 

  23. Mowla, A., Granpayeh, N.: Design of a flat gain multipumped distributed fiber Raman amplifier by particle swarm optimization. J. Opt. Soc. Am. A 25, 3059–3066 (2008)

    ADS  Article  Google Scholar 

  24. Othman, M.A., et al.: Erbium doped fiber amplifier (EDFA) for C-band optical communication system. International Journal of Engineering & Technology IJET-IJENS 12(4), 48–50 (2012)

    Google Scholar 

  25. Park, J., Lee, W., Taylor, H.F.: Fiber optic intrusion sensor with the configuration of an optical time-domain reflectometer using coherent interference of Rayleigh backscattering. In: Proceedings of the SPIE 3555 Optical and Fiber Optic Sensor Systems Beijing China 16 September (1998)

  26. Peng, F.: 128 km fully-distributed high-sensitivity fiber-optic intrusion sensor with 15 m spatial resolution. In: Optical Fiber Communication Conference. Optical Society of America (2014)

  27. Rao, Y.-J., et al.: Long-distance fiber-optic Φ-OTDR intrusion sensing system. In: 20th International Conference on Optical Fibre Sensors. Vol. 7503. International Society for Optics and Photonics (2009)

  28. Saleh, A.A.M., Jopson, R.M., Evankow, J.D., Aspell, J.: Modeling of gain in erbium-doped fiber amplifiers. IEEE Photon. Technol. Lett. 2, 714–717 (1990)

    ADS  Article  Google Scholar 

  29. Singh, S.P., Gangwar, R., Singh, N.: Nonlinear scattering effects in optical fibers. Progr. Electromagn. Res. 74, 379–405 (2007)

    Article  Google Scholar 

  30. Taylor, H.F., Lee, C.E.: Apparatus and method for fiber optic intrusion sensing. U.S. Patent 5, 194 847 March 16 (1993)

  31. Tiwari, U., Thyagarajan, K., Shenoy, M.R.: Simulation and experimental characterization of Raman/EDFA hybrid amplifier with enhanced performance. Opt. Commun. 282(8), 1563–1566 (2009)

    ADS  Article  Google Scholar 

  32. Wang, F., et al.: Development of a multiperimeter sensing system based on POTDR. IEEE Photon. J. 10(3), 1–7 (2018)

    Google Scholar 

  33. Wu, H. et al.: Few mode fibers based quasi-single mode Raman distributed temperature sensor. In: 2017 Optical Fiber Sensors Conference (OFS) 25th IEEE. (2017)

  34. Xiaoyi, B., Chen, L.: Recent progress in distributed fiber optic sensors. Sensors. 12(7), 8601–8639 (2012)

    Article  Google Scholar 

  35. Zhang, J., et al.: Breaking through the band width barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling. In: Optical Fiber Sensors Conference (OFS) 2017 25th IEEE (2017)

  36. Zhao, Z., et al.: Feature extraction and identification of pipeline intrusion based on phase-sensitive optical time domain reflectometer. In: International Conference on Wireless and Satellite Systems. Springer, Cham (2019)

  37. Zhihua, Y., et al.: Distributed optical fiber sensing with Brillouin Optical Time Domain Reflectometry based on differential pulse. Opt. Laser Technol. 105, 89–93 (2018)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdollah Malakzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malakzadeh, A., Pashaie, R. & Mansoursamaei, M. 150 km φ-OTDR sensor based on erbium and Raman amplifiers. Opt Quant Electron 52, 326 (2020). https://doi.org/10.1007/s11082-020-02439-w

Download citation

Keywords

  • φ-OTDR
  • Erbium amplifier
  • Raman amplifier
  • Sensing range