Investigation of graphene fractal frequency selective surface loaded terahertz absorber

Abstract

The voyage of the research in terahertz (THz) technology has an intriguing application in terahertz detection, and the graphene absorbers have dramatically enhanced the effectivity, and the efficiency in its performance. Though, there is a need of wide angle insensible, polarization angle insensible, broadband terahertz metamaterial absorber (TMA) with reduced design complexity. Hence, in this research an effort has been carried out to develop such TMA with equivalent circuit modelling approach. A massive − 10 dB reflection coefficient (RC) bandwidth of 2.66 THz (1.08–3.74 THz) has been obtained by the proposed TMA device with two significant peaks of − 19.48 dB and − 14.5 dB at 1.32 THz and 3.44 THz, respectively. The oblique incidence stability of the device has been verified by investigating the effect of wave incidence angle, and wave polarization angle in RC characteristic. Further, the physics behind the absorption has been systematically illustrated along with three different absorption mechanism, i.e., input-impedance matching mechanism, wave interference phenomena, and induced current model, that attest the Unprecedented absorption results. Moreover, the electrical parameters of the device (i.e., effective electric permittivity, and effective magnetic permeability) have been extracted to analyze the metamaterial behavior of the device. The results are good enough to explore the potential of the TMA for THz sensing applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amin, M., Farhat, M., Baggc, H.: An ultra-broadband multi-layered graphene absorber. Opt. Express 21(24), 29938–29948 (2013). https://doi.org/10.1364/OE.21.029938

    ADS  Article  Google Scholar 

  2. Arik, K., Abdollah Ramezani, S., Khavasi, A.: Polarization insensitive and broadband terahertz absorber using graphene disks. Plasmonics 12, 393–398 (2016). https://doi.org/10.1007/s11468-016-0276-4

    Article  Google Scholar 

  3. Barzegar-Parizi, S.: Realization of wide-Angle and wideband absorber using metallic and graphene-based metasurface for mid-infrared and low THz frequency. Opt. Quant. Electron. 50, 378 (2018). https://doi.org/10.1007/s11082-018-1649-z

    Article  Google Scholar 

  4. Barzegar-Parizi, S., Khavasi, A.: Designing dual-band absorbers by graphene/metallic metasurfaces. IEEE J. Quantum Electron. 55(2), 1–8 (2019). https://doi.org/10.1109/jqe.2019.2901992

    Article  Google Scholar 

  5. Chen, H.T., O’Hara, J.F., Azad, A.K., Shrekenhamer, D., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Averitt, R.D., Taylor, A.J.: Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006). https://doi.org/10.1038/nature05343

    ADS  Article  Google Scholar 

  6. Deng, G., Xia, T., Yang, J., Yin, Z.: Triple-band polarisation-independent metamaterial absorber at mm wave frequency band. IET Microw. Antennas Propag. 12(7), 1120–1125 (2018). https://doi.org/10.1049/iet-map.2017.0126

    Article  Google Scholar 

  7. Diego, C., Juan, S.G., Andrea, A., Alejandro, A.M.: Electrically and magnetically biased graphene-based cylindrical waveguides: analysis and applications as reconfigurable antennas. IEEE Trans. Terahertz Sci. Technol. 5(6), 951–960 (2015). https://doi.org/10.1109/TTHZ.2015.2472985

    Article  Google Scholar 

  8. Driscoll, T., Andreev, G.O., Basov, D.N., Palit, S., Cho, S.Y., Jokerst, N.M., Smith, D.R.: Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl. Phys. Lett. 91(6), 062511–062513 (2007). https://doi.org/10.1063/1.2768300

    ADS  Article  Google Scholar 

  9. Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), 111101–111122 (2010). https://doi.org/10.1063/1.3386413

    ADS  Article  Google Scholar 

  10. Gomez-Diaz, J.S., Perruisseau-Carrier, J., Sharma, P., Ionescu, A.: Non-contact characterization of graphene surface impedance at micro and millimeter waves. J. Appl. Phys. 111(11), 114908 (2012). https://doi.org/10.1063/1.4728183

    ADS  Article  Google Scholar 

  11. Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme. J. Appl. Phys. 103(6), 064302 (2008). https://doi.org/10.1063/1.2891452

    ADS  Article  Google Scholar 

  12. Huang, X., Zhang, X., Hu, Z., Aqeeli, M., Alburaikan, A.: Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach. IET Microw. Antennas Propag. 9(4), 307–312 (2015). https://doi.org/10.1049/iet-map.2014.0152

    Article  Google Scholar 

  13. Huang, M., Cheng, Y., Cheng, Z., Chen, H., Mao, X., Gong, R.: Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Opt. Commun. 415, 194–201 (2018). https://doi.org/10.1016/j.optcom.2018.01.051

    ADS  Article  Google Scholar 

  14. Kenney, M., Grant, J., Shah, Y.D., Escorcia-Carranza, I., Humphreys, M., Cumming, D.R.S.: Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers. ACS Photonics 4, 2604–2612 (2017). https://doi.org/10.1021/acsphotonics.7b00906

    Article  Google Scholar 

  15. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008). https://doi.org/10.1103/physrevlett.100.207402

    ADS  Article  Google Scholar 

  16. Lee, S.W.: Scattering by dielectric-loaded screen. IEEE Trans. Antennas Propag. 19(5), 656–665 (1971). https://doi.org/10.1109/TAP.1971.1140010

    ADS  Article  Google Scholar 

  17. Liao, Z., Gong, R., Nie, Y., Wang, T., Wang, X.: Absorption enhancement of fractal frequency selective surface absorbers by using microwave absorbing material based substrates. Photonics Nanostruct. 9(3), 287–294 (2011). https://doi.org/10.1016/j.photonics.2011.05.006

    ADS  Article  Google Scholar 

  18. Mason, J.A., Allen, G., Podolskiy, V.A., Wasserman, D.: Strong coupling of molecular and mid-infrared perfect absorber resonances. IEEE Photon. Technol. Lett. 24(1), 31–33 (2012). https://doi.org/10.1109/LPT.2011.2171942

    ADS  Article  Google Scholar 

  19. Mishra, R., Panwar, R., Singh, D.: Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers. IEEE Magn. Lett. 9, 3707205 (2018). https://doi.org/10.1109/lmag.2018.2878946

    Article  Google Scholar 

  20. Mishra, R., Sahu, A., Panwar, R.: Cascaded graphene frequency selective surface integrated tunable broadband terahertz metamaterial absorber. IEEE Photonics J. 11(2), 2200310 (2019). https://doi.org/10.1109/jphot.2019.2900402

    Article  Google Scholar 

  21. Munk, B.A.: Frequency Selective Surfaces: Theory and Design, pp. 365–375. Wiley, New York (2000). https://doi.org/10.1002/0471723770

    Google Scholar 

  22. Panwar, R., Lee, J.R.: Progress in frequency selective surface-based smart electromagnetic structures: a critical review. Aerosp. Sci. Technol. 66, 216–234 (2017)

    Article  Google Scholar 

  23. Panwar, R., Lee, J.R.: Performance and non-destructive evaluation methods of airborne radome and stealth structures. Meas. Sci. Technol. 29(6), 062001 (2018). https://doi.org/10.1088/1361-6501/aaa8aa

    ADS  Article  Google Scholar 

  24. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006). https://doi.org/10.1126/science.1133628

    ADS  Article  Google Scholar 

  25. Sivasamy, R., Kanagasabai, M.: Novel reconfigurable 3-D frequency selective surface. IEEE Trans. Comp. Pack. Manuf. Technol. 7(10), 1678–1682 (2017). https://doi.org/10.1109/tcpmt.2017.2688367

    Article  Google Scholar 

  26. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000). https://doi.org/10.1103/PhysRevLett.84.4184

    ADS  Article  Google Scholar 

  27. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004). https://doi.org/10.1126/science.1096796

    ADS  Article  Google Scholar 

  28. Surya, V.J., Iyakutti, K., Mizuseki, H., Kawazoe, Y.: Tuning electronic structure of graphene: a first-principle study. IEEE Trans. Nanotechnol. 11(3), 534–541 (2012). https://doi.org/10.1109/TNANO.2011.2182358

    ADS  Article  Google Scholar 

  29. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007). https://doi.org/10.1038/nphoton.2007.3

    ADS  Article  Google Scholar 

  30. Wang, D., Zhao, W., Xie, H., Hu, J., Zhou, L., Chen, W., Gao, P., Ye, J., Xu, Y., Chen, H., Li, E., Yin, W.: Tunable THz multiband frequency-selective surface based on hybrid metal–graphene structures. IEEE Trans. Nanotechnol. 16(6), 1132–1137 (2017). https://doi.org/10.1109/TNANO.2017.2749269

    ADS  Article  Google Scholar 

  31. Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47(21), 3853–3863 (2002). https://doi.org/10.1088/0031-9155/47/21/325

    Article  Google Scholar 

  32. Yilmaz, A.E., Kuzuoglu, M.: Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model. Radioengineering 18(2), 95–102 (2009)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ravi Panwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, R., Panwar, R. Investigation of graphene fractal frequency selective surface loaded terahertz absorber. Opt Quant Electron 52, 317 (2020). https://doi.org/10.1007/s11082-020-02433-2

Download citation

Keywords

  • Absorber
  • Equivalent circuit modeling
  • Graphene-nanomaterial
  • Metamaterial
  • THz wave detectors