Bidirectional hybrid OFDM based free-space/wireless-over-fiber transport system

Abstract

We propose and demonstrate a successful application of orthogonal frequency division multiplexing (OFDM), reflective semiconductor optical amplifier and polarization multiplexing techniques to facilitate bidirectional hybrid OFDM based integrated free-space optics and wireless transport system. The downlink 12 Gbps OFDM data-stream and 79 community antenna television (CATV) channels are transmitted over 50 km single mode fiber (SMF) as well as 12 m and 10 m free-space link, respectively. The uplink 10 Gbps/5 GHz and 5 Gbps/3.5 GHz OFDM data streams are communicated over separate 50 km SMF along with 8 m wireless links. We have used 32-quadrature amplitude modulation (QAM) and 16-QAM modulation formats for downlink and uplink, correspondingly. The performance of the system is observed by evaluating carrier-to-noise ratio (CNR), composite second-order (CSO) and composite-triple-beat (CTB) for the CATV signal, and constellations diagrams, bit error rate (BER), signal-to-noise ratio (SNR), and error vector magnitude (EVM) values for the OFDM signals. After transmission over 50 km SMF as well as 10 m free-space, the resulting CNR, CSO and CTB values are > 51 dB, < − 63 dB and < − 65 dB, respectively. The receiver sensitivity of about 4 dBm is increased for the downlink OFDM signal at BER value of \(10^{ - 9}\) using LNA and CDR, as well as EVM and average SNR are observed below 10.5% and > 23.3 dB, respectively. 4 dBm and 3.2 dBm power penalties at BER of \(10^{ - 8}\), below 13% EVM and > 21.3 dB/ > 22.2 dB SNR values are observed for the uplink 10 Gbps/5 GHz and the 5 Gbps/3.5 GHz OFDM data signals, respectively, over 50 km SMF as well as 8 m wireless is observed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Chi, Y.-C., Hsieh, D.-H., Lin, C.-Y., Chen, H.-Y., Huang, C.-Y., He, J.-H., Ooi, B., DenBaars, S.P., Nakamura, S., Kuo, H.-C., Lin, G.-R.: Phosphorous diffuser diverged blue laser diode for indoor lighting and communication. Sci. Rep. (2015a). https://doi.org/10.1038/srep18690

    Article  Google Scholar 

  2. Chi, Y.-C., Hsieh, D.-H., Tsai, C.-T., Chen, H.-Y., Kuo, H.-C., Lin, G.-R.: 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Opt. Exp. 23, 13051–13059 (2015b). https://doi.org/10.1364/OE.23.013051

    ADS  Article  Google Scholar 

  3. Chronopoulos, S.K., Tatsis, G., Raptis, V., Kostarakis, P.: Enhanced PAPR in OFDM without deteriorating BER performance. Int. J. Commun. Netw. Syst. Sci. 4, 164–169 (2011)

    Google Scholar 

  4. Cimini Jr., L.J.: Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33, 665–675 (1985)

    Article  Google Scholar 

  5. Das, A.S., Patra, A.S.: RSOA based full-duplex WDMPON for 20 Gbps transmission in two channels over a long-haul SMF using external-modulation scheme. J. Opt. Commun. (2015). https://doi.org/10.1515/joc-2014-0059

    Article  Google Scholar 

  6. Djordjevic, I.B., Vasic, B.: Orthogonal frequency division multiplexing for high-speed optical transmission. Opt. Exp. 14, 3767–3775 (2006)

    ADS  Article  Google Scholar 

  7. Douss, S., Touati, F., Loulou, M.: An RF-LO current-bleeding doubly balanced mixer for IEEE 802.15.3a UWB MB-OFDM standard receivers. AEU Int. J. Electron. Commun. 62, 490–495 (2008)

    Article  Google Scholar 

  8. Gupta, M.K., Tiwari, S.: Performance evaluation of conventional and wavelet based OFDM system. AEU Int. J. Electron. Commun. 67, 348–354 (2013)

    Article  Google Scholar 

  9. IEEE 801.15 WPAN task group 3 (TG3). IEEE 802.15.3 standard for high rate wireless personal area networks. https://www.ieee802.org/15/pub/TG3.html

  10. Jung, H.-D., Tran, N.-C., Okonkwo, C., Tandiongga, E., Koonen, T.: 10 Gb/s Bidirectional systematic WDM-PON system based on POLMUX technique with polarization insensitive ONU. Proc. OSA/OFC/NFOEC (2010). https://doi.org/10.1364/NFOEC.2010.JThA27

    Article  Google Scholar 

  11. Laskar, J., Pinel, S., Dawn, D., Sarkar, S., Perumana, B., Sen, P.: The next wireless wave is a millimeter wave. Microw. J. 50, 22–34 (2007)

    Google Scholar 

  12. Le, T.N., Hsieh, Y.-T., Chin, W.-L.: Timing synchronizer and its architecture for OFDM-based high-throughput millimeter wave systems. AEU Int. J. Electron. Commun. 79, 110–115 (2017)

    Article  Google Scholar 

  13. Li, Y.G., Stuber, G.L.: Orthogonal Frequency Division Multiplexing for Wireless Communications. Springer, New York (2006)

    Google Scholar 

  14. Li, C.-Y., Lu, H.-H., Lin, C.-Y., Chu, C.-A., Chen, B.-R., Lin, H.-H., Wu, C.-J.: Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS. IEEE Photonics J. (2016). https://doi.org/10.1109/JPHOT.2016.2538967

    Article  Google Scholar 

  15. Lim, C., Yang, Y., Nirmalathas, A.: Wireless signals transport in fiber-wireless links: digitized versus analog. In: Conference on Optical Internet (COIN) (2014). https://doi.org/10.1109/COIN.2014.6950588

  16. Lin, C.-Y., Lin, Y.-P., Lu, H.-H., Chen, C.Y., Jhang, T.W., Chen, M.-C.: Optical free-space wavelength-division-multiplexing transport system. Opt. Lett. 39, 315–318 (2014)

    ADS  Article  Google Scholar 

  17. Lin, C.-Y., Chi, Y.-C., Tsai, C.-T., Wang, H.-Y., Lin, G.-R.: 39-GHz millimeter-wave carrier generation in dual-mode colorless laser diode for OFDM-MMWoF transmission. IEEE J. Sel. Top. Quantum Electron. (2015). https://doi.org/10.1109/JSTQE.2015.2464276

    Article  Google Scholar 

  18. Lin, C.-Y., Chi, Y.-C., Tsai, C.-T., Wang, H.-Y., Chen, H.-Y., Xu, M., Chang, G.-K., Lin, G.-R.: Millimeter-wave carrier embedded dual-color laser diode for 5G MMW oF link. J. Lightwave Technol. 35, 2409–2420 (2017a)

    ADS  Article  Google Scholar 

  19. Lin, C.-Y., Chi, Y.-C., Tsai, C.-T., Chen, H.-Y., Lin, G.-R.: Two-color laser diode for 54-Gb/s fiber-wired and 16-Gb/s MMW wireless OFDM transmissions. Photonics Res. (2017b). https://doi.org/10.1364/PRJ.5.000271

    Article  Google Scholar 

  20. Liu, M., Wang, J., Li, B.: Non-data aided joint estimation of symbol timing offset and carrier frequency offset for OFDM/OQAM systems. AEU Int. J. Electron. Commun. 87, 164–172 (2018)

    Article  Google Scholar 

  21. Lu, H.-H., Lin, Y.-P., Wu, P.-Y., Chen, C.-Y., Chen, M.-C., Jhang, T.-W.: A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators. Opt. Exp. 22, 3468–3474 (2014)

    ADS  Article  Google Scholar 

  22. Mahloo, M., Chen, J., Wosinska, L., Dixit, A., Lannoo, B., Colle, D., Machuca, C.M.: Toward reliable hybrid WDM/TDM passive optical networks. IEEE Commun. Mag. (2014). https://doi.org/10.1109/MCOM.2014.6736740

    Article  Google Scholar 

  23. Mallick, K., Mandal, P., Mandal, G.C., Mukherjee, R., Das, B., Patra, A.S.: Hybrid MMW-over fiber/OFDM-FSO transmission system based on doublet lens scheme and POLMUX technique. Opt. Fiber Technol. (2019). https://doi.org/10.1016/j.yofte.2019.101942

    Article  Google Scholar 

  24. Mitchell, J.E.: Integrated wireless backhaul over optical access networks. J. Lightwave Technol. (2014). https://doi.org/10.1109/JLT.2014.2321774

    Article  Google Scholar 

  25. Monemi, M., Zolghadrasli, A., Golbaharhaghighi, S.: High performance SINR assignment in multi-cell wireless networks. AEU Int. J. Electron. Commun. 69, 1403–1411 (2015)

    Article  Google Scholar 

  26. Mukherjee, R., Mallick, K., Mandal, P., Mandal, G.C., Patra, A.S.: Fourth-generation bidirectional wireless hybrid transmission system employing power-doubler-amplifier and data comparator. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0072

    Article  Google Scholar 

  27. Sanzi, F.: Comparison of bit error rate and convergence of four different iterative receivers for wireless OFDM-CDM. AEU Int. J. Electron. Commun. 59, 166–176 (2005)

    ADS  Article  Google Scholar 

  28. Shao, T., Yao, J.: Millimeter wave and UWB over colourless WDM-PON based on polarization multiplexing using polarization modulator. J. Lightw. Technol. 31, 2742–2751 (2013)

    ADS  Article  Google Scholar 

  29. Tang, C., Li, X., Li, F., Zhang, J., Xiao, J., Tian, Y., Zhang, J.: A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band. Opt. Exp. 22, 239–245 (2014)

    ADS  Article  Google Scholar 

  30. Tiwari, N., Rao, T.R.: A switched beam antenna array with butler matrix network using substrate integrated waveguide technology for 60 GHz wireless communications. AEU Int. J. Electron. Commun. 70, 850–856 (2016)

    Article  Google Scholar 

  31. Trivedi, Y.N.: Performance analysis of OFDM system with transmit antenna selection using delayed feedback. AEU Int. J. Electron. Commun. 67, 671–675 (2013)

    Article  Google Scholar 

  32. Tsai, C.-T., Lin, C.-H., Lin, C.-T., Chi, Y.-C., Lin, G.-R.: 60-GHz millimeter-wave over fiber with directly modulated dual-mode laser diode. Sci. Rep. (2016). https://doi.org/10.1038/srep27919

    Article  Google Scholar 

  33. Tsai, C.-T., Chi, Y.-C., Lin, G.-R.: Destructively interfered beating dual-mode VCSEL for carrierless MMW fiber-wireless access link with suppressed RF fading. IEEE J. Sel. Top. Quantum (2017). https://doi.org/10.1109/JSTQE.2017.2687040

    Article  Google Scholar 

  34. Wang, H.-Y., Chi, Y.-C., Lin, G.-R.: Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link. Opt. Exp. 24, 17654–17669 (2016)

    ADS  Article  Google Scholar 

  35. Weinstein, S., Ebert, P.: Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE. Trans. Commun. Technol. 19, 628–634 (1971)

    Article  Google Scholar 

  36. Wu, T.-C., Chi, Y.-C., Wang, H.-Y., Tsai, C.-T., Lin, G.-R.: Blue laser diode enables underwater communication at 12.4 Gbps. Sci. Rep. (2015). https://doi.org/10.1038/srep40480

    Article  Google Scholar 

  37. Wu, T.-C., Chi, Y.-C., Wang, H.-Y., Tsai, C.-T., Huang, Y.-F., Lin, G.-R.: Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-00052-8

    Article  Google Scholar 

  38. Yang, L., Siu, Y.M., Soo, K.K., Leung, S.W., Li, S.Q.: Low-complexity PAPR reduction technique for OFDM systems using modified widely linear SLM scheme. AEU Int. J. Electron. Commun. 66, 1006–1010 (2012)

    Article  Google Scholar 

  39. Ye, C., Zhang, L., Zhu, M., Yu, J., He, S., Chang, G.K.: A bidirectional 60-GHz wireless-overfiber transport system with centralized local oscillator service delivered to mobile terminals and base stations. IEEE Photonics Technol. Lett. 24, 1984–1987 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Sidho-Kanho-Birsha University, Purulia and DST, Govt. of West Bengal (Memo No; 1154(Sanc.)/ST/P/S&T/3G-1/2015 dated 01.03.2016) for financial support to carry the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ardhendu Sekhar Patra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Mallick, K., Mandal, P. et al. Bidirectional hybrid OFDM based free-space/wireless-over-fiber transport system. Opt Quant Electron 52, 311 (2020). https://doi.org/10.1007/s11082-020-02428-z

Download citation

Keywords

  • OFDM
  • RSOA
  • POLMUX
  • FSO
  • Wireless