Laser ablation-assisted synthesis of tungsten sub-oxide (W17O47) nanoparticles in water: effect of laser fluence

Abstract

Tungsten sub-oxide (W17O47) nanoparticles were produced for the first time, via pulsed laser ablation of a pure tungsten target in distilled water. The beam of a Q-switched Nd:YAG laser of 1064 nm wavelength with 0.6, 0.8, 1.2 and 1.4 J/cm2 fluences was employed to irradiate the target. Produced nanoparticles were characterized using field emission scanning electron microscopy coupled with energy dispersive spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), UV–Vis absorption spectroscopy and room temperature Photoluminescence (PL). XRD patterns revealed that all samples possess the monoclinic structure corresponding to \({\mathrm{W}}_{17}{\mathrm{O}}_{47}\) phase. With increasing the laser fluence, the average size of the nanoparticles increased and subsequently, their band gap energy decreased. The PL spectra of the samples show the presence of oxygen vacancies or defects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alaei, M., Mahjoub, A.R., Rashidi, A.: Preparation of different WO3 nanostructures and comparison of their ability for Congo red photo degradation. Iran J. Chem. Chem. Eng. 31, 31–36 (2012)

    Google Scholar 

  2. Barreca, F., Acacia, N., Spadaro, S., Curro, G., Neri, F.: Tungsten trioxide (WO3− x) nanoparticles prepared by pulsed laser ablation in water. Mater. Chem. Phys. 127, 197–202 (2011)

    Article  Google Scholar 

  3. Bishop, J.L., Pieters, C.M., Edwards, J.O.: Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner. 42, 702–716 (1994)

    ADS  Article  Google Scholar 

  4. Brütsch, L., Czolk, J., Popescu, R., Gerthsen, D., Colsmann, A., Feldmann, C.: Surfactant-free synthesis of sub-stoichiometry tungsten oxide nanoparticles and their use as anode buffer layers in organic solar cells. Solid State Sci. 69, 50–55 (2017)

    ADS  Article  Google Scholar 

  5. Chala, T., Wu, C.-M., Chou, M.-H., Gebeyehu, M., Cheng, K.-B.: Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials 7, 191 (2017)

    Article  Google Scholar 

  6. Chong, S., Ingham, B., Tallon, J.: Novel materials based on organic–tungsten oxide hybrid systems I: synthesis and characterisation. Curr. Appl. Phys. 4, 197–201 (2004)

    Article  Google Scholar 

  7. Cong, S., Tian, Y., Li, Q., Zhao, Z., Geng, F.: Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260–4267 (2014)

    Article  Google Scholar 

  8. Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction, 3rd edn. Pearson, London (2014)

    Google Scholar 

  9. Daniel, M., Desbat, B., Lassegues, J., Gerand, B., Figlarz, M.: Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid State Chem. 67, 235–247 (1987)

    ADS  Article  Google Scholar 

  10. Dorranian, D., Solati, E., Dejam, L.: Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314 (2012)

    ADS  Article  Google Scholar 

  11. Dwivedi, N., Kumar, S., Malik, H., Rauthan, C., Panwar, O.: Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films. Mater. Chem. Phys. 130, 775–785 (2011a)

    Article  Google Scholar 

  12. Dwivedi, N., Kumar, S., Malik, H.K.: Nanostructured titanium/diamond-like carbon multilayer films: deposition, characterization, and applications. ACS Appl. Mater. Interfaces. 3, 4268–4278 (2011b)

    Article  Google Scholar 

  13. Dwivedi, N., Kumar, S., Tripathi, R., Carey, J., Malik, H.K., Dalai, M.: Structural and electronic characterization of nanocrystalline diamondlike carbon thin films. ACS Appl. Mater. Interfaces. 4, 5309–5316 (2012)

    Article  Google Scholar 

  14. Dwivedi, N., Kumar, S., Malik, H.K.: Role of base pressure on the structural and nano-mechanical properties of metal/diamond-like carbon bilayers. Appl. Surf. Sci. 274, 282–287 (2013)

    ADS  Article  Google Scholar 

  15. Dwivedi, N., Kumar, S., Rawal, I., Malik, H.K.: Influence of consumed power on structural and nano-mechanical properties of nano-structured diamond-like carbon thin films. Appl. Surf. Sci. 300, 141–148 (2014)

    ADS  Article  Google Scholar 

  16. Dwivedi, N., McIntosh, R., Dhand, C., Kumar, S., Malik, H.K., Bhattacharyya, S.: Structurally driven enhancement of resonant tunneling and nanomechanical properties in diamond-like carbon superlattices. ACS Appl. Mater. Interfaces. 7, 20726–20735 (2015)

    Article  Google Scholar 

  17. Fakhari, M., Torkamany, M.J., Mirnia, S.N., Elahi, S.M.: UV-visible light-induced antibacterial and photocatalytic activity of half harmonic generator WO3 nanoparticles synthesized by pulsed laser ablation in water. Opt. Mater. 85, 491–499 (2018a)

    ADS  Article  Google Scholar 

  18. Fakhari, M., Torkamany, M.J., Mirnia, S.N.: Linear and nonlinear optical properties of WO3 nanoparticles synthesized at different fluences of pulsed Nd: YAG laser. Eur. Phys. J. Appl. Phys. 84, 30401 (2018b)

    ADS  Article  Google Scholar 

  19. Fukushi, D., Sasaki, A., Hirabayashi, H., Kitano, M.: Effect of oxygen vacancy in tungsten oxide on the photocatalytic activity for decomposition of organic materials in the gas phase. Microelectron. Reliab. 79, 1–4 (2017)

    Article  Google Scholar 

  20. Ghasemi, L., Jafari, H.: Morphological characterization of tungsten trioxide nanopowders synthesized by sol–gel modified pechini's method. Mater. Res. 20, 1713–1721 (2017)

    Article  Google Scholar 

  21. Ghobadi, N.: Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013)

    Article  Google Scholar 

  22. González-Borrero, P., Sato, F., Medina, A., Baesso, M.L., Bento, A.C., Baldissera, G., Persson, C., Niklasson, G.A., Granqvist, C.G., Ferreira da Silva, A.: Optical band-gap determination of nanostructured WO 3 film. Appl. Phys. Lett. 96, 061909 (2010)

    ADS  Article  Google Scholar 

  23. Gotić, M., Ivanda, M., Popović, S., Musić, S.: Synthesis of tungsten trioxide hydrates and their structural properties. Mater. Sci. Eng., B 77, 193–201 (2000)

    Article  Google Scholar 

  24. Granqvist, C.G.: Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60, 201–262 (2000)

    Article  Google Scholar 

  25. Gullapalli, S., Vemuri, R., Ramana, C.: Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films. Appl. Phys. Lett. 96, 171903 (2010)

    ADS  Article  Google Scholar 

  26. Guo, C., Yin, S., Dong, Q., Sato, T.: The near infrared absorption properties of W 18 O 49. RSC Adv. 2, 5041–5043 (2012)

    Article  Google Scholar 

  27. He, T., Yao, J.: Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547–4557 (2007)

    Article  Google Scholar 

  28. Isaac, N.A., Valenti, M., Schmidt-Ott, A., Biskos, G.: Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing. ACS Appl. Mater. Interfaces. 8, 3933–3939 (2016)

    Article  Google Scholar 

  29. Ishida, Y., Motono, S., Doshin, W., Tokunaga, T., Tsukamoto, H., Yonezawa, T.: Small nanosized oxygen-deficient tungsten oxide particles: mechanistic investigation with controlled plasma generation in water for their preparation. ACS Omega 2, 5104–5110 (2017)

    Article  Google Scholar 

  30. Kim, E., Jiang, Z.-T., No, K.: Measurement and calculation of optical band gap of chromium aluminum oxide films. Jpn. J. Appl. Phys. 39, 4820 (2000)

    ADS  Article  Google Scholar 

  31. Kim, M., Lee, B.Y., Ham, H.C., Han, J., Nam, S.W., Lee, H.-S., Park, J.H., Choi, S., Shin, Y.: Facile one-pot synthesis of tungsten oxide (WO3− x) nanoparticles using sub and supercritical fluids. J. Supercrit. Fluids 111, 8–13 (2016)

    Article  Google Scholar 

  32. Kumar, V.B., Mohanta, D.: Formation of nanoscale tungsten oxide structures and colouration characteristics. Bull. Mater. Sci. 34, 435–442 (2011)

    Article  Google Scholar 

  33. Lavanya, N., Anithaa, A., Sekar, C., Asokan, K., Bonavita, A., Donato, N., Leonardi, S., Neri, G.: Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. J. Alloy. Compd. 693, 366–372 (2017)

    Article  Google Scholar 

  34. Lee, K., Seo, W.S., Park, J.T.: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408–3409 (2003)

    Article  Google Scholar 

  35. Mansoureh, G., Parisa, V.: Synthesis of Metal Nanoparticles Using Laser Ablation Technique, Emerging Applications of Nanoparticles and Architecture Nanostructures, pp. 575–596. Elsevier, Amsterdam (2018)

    Google Scholar 

  36. Moradi, M., Solati, E., Darvishi, S., Dorranian, D.: Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Cluster Sci. 27, 127–138 (2016)

    Article  Google Scholar 

  37. Mostafa, A.M., Yousef, S.A., Eisa, W.H., Ewaida, M.A., Al-Ashkar, E.A.: WO3 quantum dot: synthesis, characterization and catalytic activity. J. Mol. Struct. 1185, 351–356 (2019)

    ADS  Article  Google Scholar 

  38. Pankove, J.I.: Optical Processes in Semiconductors, 2nd edn. Courier Corporation, Chelmsford (2010)

    Google Scholar 

  39. Petit, T., Puskar, L.: FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. (2018). https://doi.org/10.1016/j.diamond.2018.08.005

    Article  Google Scholar 

  40. Petit, T., Puskar, L., Dolenko, T., Choudhury, S., Ritter, E., Burikov, S., Laptinskiy, K., Brzustowski, Q., Schade, U., Yuzawa, H.: Unusual water hydrogen bond network around hydrogenated nanodiamonds. J. Phys. Chem. C 121, 5185–5194 (2017)

    Article  Google Scholar 

  41. Popov, A., Zholobak, N., Balko, O., Balko, O., Shcherbakov, A., Popova, N., Ivanova, O., Baranchikov, A., Ivanov, V.: Photo-induced toxicity of tungsten oxide photochromic nanoparticles. J. Photochem. Photobiol. B 178, 395–403 (2018)

    Article  Google Scholar 

  42. Ragunathan, A., Krishnan, R., Kamaludeen, B.A.: Stability of tungsten oxide nanoparticles in different media. J. Chem. Res. 39, 622–626 (2015)

    Article  Google Scholar 

  43. Schieder, M., Lunkenbein, T., Martin, T., Milius, W., Auffermann, G., Breu, J.: Hierarchically porous tungsten oxide nanotubes with crystalline walls made of the metastable orthorhombic polymorph. J. Mater. Chem. A 1, 381–387 (2013)

    Article  Google Scholar 

  44. Sekhon, J.S., Malik, H.K., Verma, S.: Tailoring surface plasmon resonance wavelengths and sensoric potential of core–shell metal nanoparticles. Sens. Lett. 11, 512–518 (2013a)

    Article  Google Scholar 

  45. Sekhon, J.S., Malik, H.K., Verma, S.: DDA simulations of noble metal and alloy nanocubes for tunable optical properties in biological imaging and sensing. RSC adv. 3, 15427–15434 (2013b)

    Article  Google Scholar 

  46. Shah, M., Muzyyan, N., Hazratbal, S.: A novel approach for the synthesis of tungsten trioxide nanostructures. J. King Abdulaziz Univ. Sci. 21, 109–115 (2009)

    Article  Google Scholar 

  47. Shenderova, O., Panich, A., Moseenkov, S., Hens, S., Kuznetsov, V., Vieth, H.-M.: Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies. J. Phys. Chem. C 115, 19005–19011 (2011)

    Article  Google Scholar 

  48. Solati, E., Dorranian, D.: Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Cluster Sci. 26, 727–742 (2015)

    Article  Google Scholar 

  49. Solati, E., Dorranian, D.: Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl. Phys. B 122, 76 (2016a)

    ADS  Article  Google Scholar 

  50. Solati, E., Dorranian, D.: Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull. Mater. Sci. 39, 1677–1684 (2016b)

    Article  Google Scholar 

  51. Stehlik, S., Glatzel, T., Pichot, V., Pawlak, R., Meyer, E., Spitzer, D., Rezek, B.: Water interaction with hydrogenated and oxidized detonation nanodiamonds—Microscopic and spectroscopic analyses. Diam. Relat. Mater. 63, 97–102 (2016)

    ADS  Article  Google Scholar 

  52. Supothina, S., Seeharaj, P., Yoriya, S., Sriyudthsak, M.: Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 33, 931–936 (2007)

    Article  Google Scholar 

  53. Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

    ADS  Article  Google Scholar 

  54. Tiwari, A., Gong, S.: Electrochemical synthesis of Chitosan-co-polyaniline/WO3⋅ nH2O composite electrode for amperometric detection of NO2 Gas. Electroanal.: Int. J. Devot. Fundam. Pract. Asp. Electroanal. 20, 1775–1781 (2008)

    Article  Google Scholar 

  55. Viezbicke, B.D., Patel, S., Davis, B.E., Birnie, D.P.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b) 252, 1700–1710 (2015)

    ADS  Article  Google Scholar 

  56. Wang, Y., Wang, X., Xu, Y., Chen, T., Liu, M., Niu, F., Wei, S., Liu, J.: Simultaneous synthesis of wo3− x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications. Small 13, 1603689 (2017)

    Article  Google Scholar 

  57. Wasmi, B.A., Al-Amiery, A.A., Kadhum, A.A.H., Mohamad, A.B.: Novel approach: tungsten oxide nanoparticle as a catalyst for malonic acid ester synthesis via ozonolysis. J. Nanomater. 2014, 2 (2014)

    Article  Google Scholar 

  58. Yahiaoui, K., Kerdja, T., Malek, S.: Phase explosion in tungsten target under interaction with Nd: YAG laser tripled in frequency. Surf. Interface Anal. 42, 1299–1302 (2010)

    Article  Google Scholar 

  59. Yamazaki, S., Shimizu, D., Tani, S., Honda, K., Sumimoto, M., Komaguchi, K.: Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose. ACS Appl. Mater. Interfaces 10, 19889–19896 (2018)

    Article  Google Scholar 

  60. Zamiranvari, A., Solati, E., Dorranian, D.: Effect of CTAB concentration on the properties of graphene nanosheet produced by laser ablation. Opt. Laser Technol. 97, 209–218 (2017)

    ADS  Article  Google Scholar 

  61. Zhan, Y., Liu, Y., Liu, Q., Liu, Z., Yang, H., Lei, B., Zhuang, J., Hu, C.: Size-controlled synthesis of fluorescent tungsten oxide quantum dots via one-pot ethanol-thermal strategy for ferric ions detection and bioimaging. Sens. Actuators B Chem. 255, 290–298 (2018)

    Article  Google Scholar 

  62. Zhao, Z., Bai, Y., Ning, W., Fan, J., Gu, Z., Chang, H., Yin, S.: Effect of surfactants on the performance of 3D morphology W18O49 by solvothermal synthesis. Appl. Surf. Sci. 471, 537–544 (2019)

    ADS  Article  Google Scholar 

  63. Zheng, H., Ou, J.Z., Strano, M.S., Kaner, R.B., Mitchell, A., Kalantar-zadeh, K.: Nanostructured tungsten oxide–properties, synthesis, and applications. Adv. Func. Mater. 21, 2175–2196 (2011)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Famili, Z., Dorranian, D. & Sari, A.H. Laser ablation-assisted synthesis of tungsten sub-oxide (W17O47) nanoparticles in water: effect of laser fluence. Opt Quant Electron 52, 305 (2020). https://doi.org/10.1007/s11082-020-02425-2

Download citation

Keywords

  • Tungsten oxide nanoparticles
  • Tungsten sub-oxide
  • Laser ablation
  • Exciton absorption