Skip to main content
Log in

Graphene light modulator based on dual-ring resonator structure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a graphene–dielectric–graphene modulator with a dual-ring resonator structure is designed. To achieve the dynamic modulation of the light intensity, the modulator is combined with the selective frequency filtering characteristic of the dual-ring resonator and the electrically tunable characteristic of the graphene. The finite element method is used to study the radius of the ring, the dielectric material, the wavelength and the chemical potential of graphene. The simulation results show that when the incident wavelength is 1580 nm, the chemical potential drops from 0.854 to 0.834 eV, for a 5 μm-long graphene light modulator, the extinction ratio of the modulator reaches 7.56 dB. Compare the previously proposed graphene light modulator, the device can not only be combined with the high extinction ratio and small size, but also has the high speed modulation rate, which is of great significance for large-scale production and integration of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Gardes, F.Y., Thomson, D.J., Emerson, N.G., Reed, G.T.: 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express 19(12), 11804–11814 (2011)

    Article  ADS  Google Scholar 

  • Hao, R., Jin, J., Wei, X., Jin, X., Zhang, X., Li, E.: Recent developments in graphene-based optical modulators. Front. Optoelectron. 7(3), 277–292 (2014)

    Article  Google Scholar 

  • Huang, L., Gao, B., Hartland, G., Kelly, M., Xing, H.L.: Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates. Surf. Sci. 605(17), 1657–1661 (2011)

    Article  ADS  Google Scholar 

  • Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)

    Article  ADS  Google Scholar 

  • Grigorenk, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photo 6(11), 749–758 (2012)

    Article  ADS  Google Scholar 

  • Brownson, D.A.C., Banks, C.E.: The electrochemistry of CVD graphene: progress and prospects. Phys. Chem. Chem. Phys. 14(23), 8264 (2012)

    Article  Google Scholar 

  • Stauber, T., Peres, N.M.R., Geim, A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 78(8), 085432 (2008)

    Article  ADS  Google Scholar 

  • Ye, Jianting, Monica, F.C., Mikito, K., Saverio, R., Seiji, L., Hongtao, Y.: Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. U.S.A. 108(32), 13002–13006 (2011)

    Article  ADS  Google Scholar 

  • Efetov, D.K., Kim, P.: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010)

    Article  ADS  Google Scholar 

  • Jablan, M., Buljan, H., Soljacic, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. 80(24), 245435.1–245435.7 (2009)

    Article  Google Scholar 

  • Alexander, Y.Z., Fei, Y., Jason, C.R., Ertugrul, C.: Cavity-enhanced mid-infrared absorption in perforated graphene. J. Nanophoton. 8(4), 083888 (2014)

    Google Scholar 

  • Zhan, S., Li, H., Cao, G., He, Z., Li, B., Yang, H.: Slow light based on plasmon-induced transparency in dual-ring resonator-coupled mdm waveguide system. J. Phys. D Appl. Phys. 47(20), 205101 (2014)

    Article  ADS  Google Scholar 

  • Yun, B., Hu, G., Cui, Y.: Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide. J. Phys. D Appl. 43(38), 385102 (2010)

    Article  ADS  Google Scholar 

  • Hosseini, A., Massoud, Y.: Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90(18), 1811021–1811023 (2007)

    Article  Google Scholar 

  • Li, B., Li, H., Zeng, L., Zhan, S., Cao, G., He, Z.: Tunable filter and optical buffer based on dual plasmonic ring resonators. J. Mod. Opt. 62(3), 186–194 (2015)

    Article  ADS  Google Scholar 

  • Hao, R., Du, W., Chen, H., Jin, X., Yang, L., Li, E.: Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 103(6), 061116 (2013)

    Article  ADS  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province Grant (No: F2017501088) in China, the Natural Science Foundation of Hebei Province Grant (No: F2017203316) in China and the Hebei Province Higher Education Science and Technology Research Project (QN2019061) in China: Research on Biosensor Based on Diamond Thin Film Microring Resonator Structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zechen Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Guo, Z., Li, X. et al. Graphene light modulator based on dual-ring resonator structure. Opt Quant Electron 52, 302 (2020). https://doi.org/10.1007/s11082-020-02419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02419-0

Keywords

Navigation