Graphene light modulator based on dual-ring resonator structure


In this paper, a graphene–dielectric–graphene modulator with a dual-ring resonator structure is designed. To achieve the dynamic modulation of the light intensity, the modulator is combined with the selective frequency filtering characteristic of the dual-ring resonator and the electrically tunable characteristic of the graphene. The finite element method is used to study the radius of the ring, the dielectric material, the wavelength and the chemical potential of graphene. The simulation results show that when the incident wavelength is 1580 nm, the chemical potential drops from 0.854 to 0.834 eV, for a 5 μm-long graphene light modulator, the extinction ratio of the modulator reaches 7.56 dB. Compare the previously proposed graphene light modulator, the device can not only be combined with the high extinction ratio and small size, but also has the high speed modulation rate, which is of great significance for large-scale production and integration of optoelectronic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Gardes, F.Y., Thomson, D.J., Emerson, N.G., Reed, G.T.: 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express 19(12), 11804–11814 (2011)

    ADS  Article  Google Scholar 

  2. Hao, R., Jin, J., Wei, X., Jin, X., Zhang, X., Li, E.: Recent developments in graphene-based optical modulators. Front. Optoelectron. 7(3), 277–292 (2014)

    Article  Google Scholar 

  3. Huang, L., Gao, B., Hartland, G., Kelly, M., Xing, H.L.: Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates. Surf. Sci. 605(17), 1657–1661 (2011)

    ADS  Article  Google Scholar 

  4. Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)

    ADS  Article  Google Scholar 

  5. Grigorenk, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photo 6(11), 749–758 (2012)

    ADS  Article  Google Scholar 

  6. Brownson, D.A.C., Banks, C.E.: The electrochemistry of CVD graphene: progress and prospects. Phys. Chem. Chem. Phys. 14(23), 8264 (2012)

    Article  Google Scholar 

  7. Stauber, T., Peres, N.M.R., Geim, A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 78(8), 085432 (2008)

    ADS  Article  Google Scholar 

  8. Ye, Jianting, Monica, F.C., Mikito, K., Saverio, R., Seiji, L., Hongtao, Y.: Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. U.S.A. 108(32), 13002–13006 (2011)

    ADS  Article  Google Scholar 

  9. Efetov, D.K., Kim, P.: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010)

    ADS  Article  Google Scholar 

  10. Jablan, M., Buljan, H., Soljacic, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. 80(24), 245435.1–245435.7 (2009)

    Article  Google Scholar 

  11. Alexander, Y.Z., Fei, Y., Jason, C.R., Ertugrul, C.: Cavity-enhanced mid-infrared absorption in perforated graphene. J. Nanophoton. 8(4), 083888 (2014)

    Google Scholar 

  12. Zhan, S., Li, H., Cao, G., He, Z., Li, B., Yang, H.: Slow light based on plasmon-induced transparency in dual-ring resonator-coupled mdm waveguide system. J. Phys. D Appl. Phys. 47(20), 205101 (2014)

    ADS  Article  Google Scholar 

  13. Yun, B., Hu, G., Cui, Y.: Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide. J. Phys. D Appl. 43(38), 385102 (2010)

    ADS  Article  Google Scholar 

  14. Hosseini, A., Massoud, Y.: Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90(18), 1811021–1811023 (2007)

    Article  Google Scholar 

  15. Li, B., Li, H., Zeng, L., Zhan, S., Cao, G., He, Z.: Tunable filter and optical buffer based on dual plasmonic ring resonators. J. Mod. Opt. 62(3), 186–194 (2015)

    ADS  Article  Google Scholar 

  16. Hao, R., Du, W., Chen, H., Jin, X., Yang, L., Li, E.: Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 103(6), 061116 (2013)

    ADS  Article  Google Scholar 

  17. Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407 (2006)

    ADS  Article  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Hebei Province Grant (No: F2017501088) in China, the Natural Science Foundation of Hebei Province Grant (No: F2017203316) in China and the Hebei Province Higher Education Science and Technology Research Project (QN2019061) in China: Research on Biosensor Based on Diamond Thin Film Microring Resonator Structure.

Author information



Corresponding author

Correspondence to Zechen Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Guo, Z., Li, X. et al. Graphene light modulator based on dual-ring resonator structure. Opt Quant Electron 52, 302 (2020).

Download citation


  • Surface optics
  • Dual-ring resonator
  • Graphene
  • Light modulator