Effect of morphology of nanoparticles on performance of transparent display

Abstract

Nanoparticles based transparent display is one of the most successful methods to realize transparent monitors. Also, an array of nanoparticles, especially aperiodic arrangements, plays an important role in this case. Normally, when one talks about nanoparticles, the spherical morphology appears in mind, in which it is possible to implement different morphology for nanoparticles. In this paper, six different classes of morphologies with various arrangements, such as periodic array and deterministic aperiodic arrays, have been investigated to propose a high-performance transparent display. We compare different morphologies of Si–SiO2 nanoparticles at RGB (Red, Green, Blue) wavelengths in different types of arrays to find the highest scattering cross-section. Our calculations and figure of merit depending on the optical properties of nanoparticles, such as the resonance wavelength, the extinction, scattering and absorption cross-section, and the scattering to absorption ratio (SAR). We will show that in the proposed structures, there are suitable parameters to provide higher scattering cross-section as well as narrow bandwidth in which that is equivalent to introduce the maximum transparency and contrast ratio of transparent monitor. We use the Finite-Difference Time-Domain (FDTD) numerical method to simulate and calculate the deterministic aperiodic and periodic arrays of nanoparticles. Finally, we obtain the absorption and scattering cross-sections for six classes of nanoparticles: Cube, Sphere, Disk, Oblate ellipse, Prolate ellipse, and Pyramid into aperiodic and periodic arrays.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  2. Ballisti, R., Hafner, C.: The multiple multipole method(MMP) in electro-and magnetostatic problems. IEEE Trans. Mag. 19, 2367–2370 (1983). https://doi.org/10.1109/TMAG.1983.1062871

    ADS  Article  MATH  Google Scholar 

  3. Bohren, C.F., Huffman, D.R.: Absorption and scattering of light by small particles. Wiley, New Jersey (2008)

    Google Scholar 

  4. Chen, H.W., Lee, J.H., Lin, B.Y., Chen, S., Wu, S.T.: Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018). https://doi.org/10.1038/lsa.2017.168

    Article  Google Scholar 

  5. Dallapiccola, R., Gopinath, A., Stellacci, F., Negro, L.D.: Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles. Opt. Soc. Am. 16(8), 5544–5555 (2008)

    Google Scholar 

  6. Dolatyari, M., Jafari, A., Rostami, A., Klein, A.: Transparent display using a quasi-array of Si-SiO2 core-shell nanoparticles. Nat. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-38771-9

    Article  Google Scholar 

  7. Downing, E., Hesselink, L., Ralston, J., Macfarlane, R.: A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996). https://doi.org/10.1126/science.273.5279.1185

    ADS  Article  Google Scholar 

  8. Ekroll, V., Faul, F.: Transparency perception: the key to understanding simultaneous color contrast. J. Opt. Soc. of Am. A 30(3), 342–352 (2013). https://doi.org/10.1364/JOSAA.30.000342

    ADS  Article  Google Scholar 

  9. Forestiere, C., Miano, G., Boriskina, S.V., Negro, L.D.: The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Opt Soc. Am. 17(12), 9648–9661 (2009)

    Google Scholar 

  10. Gatoo, M.A., Naseem, S., Arfat, M.Y., Qasim, AMDKh, Zubair, S.: Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Hindawi Publishing Corporation, London (2014). https://doi.org/10.1155/2014/498420

    Google Scholar 

  11. Gopinah, A., Boriskina, S.V., Reinhard, B.M., Negro, L.D.: Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering(SERS). Opt. Soc. Am. 17(5), 3741–3753 (2009)

    Google Scholar 

  12. Honcapie-Ramos, J.D., Roscher, S., Buschel, W., Kister, U., Dachselt, R., Irani, P.: CAR: contact augmented reality with transparent-display mobile devices. ACM (2014). https://doi.org/10.1145/2611009.2611014

    Article  Google Scholar 

  13. Hsu, C.W., Zhen, B., Qiu, W., Shapira, O., Delacy, B.G., Joannppoulos, J.D., Solacic, M.: Transparent displays enabled by resonant nanoparticle scattering. Nat Commun. (2014). https://doi.org/10.1038/ncomms4152

    Article  Google Scholar 

  14. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Am. Chem. Soc. J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  Google Scholar 

  15. Karar, V., Ghost, S.: Attention tunneling: effects of limiting the field of view due to beam combiner frame of a head-up display. J Disp. Technol. (2014). https://doi.org/10.1109/JDT.2014.2311159

    Article  Google Scholar 

  16. Kateb, M., Safarian, S., Kolahdouz, M., Fathipour, M., Ahmadi, V.: ZnO-PEDOT core-shell nanowires: an ultrafast, high contrast and transparent electrochromic display. ELSEVIER, Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2015.10.014

    Article  Google Scholar 

  17. Kim, B.H., Park, S.C.: Optical system design for a Head-up display using aberration analysis of an off-axis two-mirror system. J. Opt. Soc. Korea (2016). https://doi.org/10.3807/JoSK.2016.20.4.481

    Article  Google Scholar 

  18. Kim, H., Seo, Y.J., Yang, B., Chu, H.Y.: Black perception in a transparent OLED display. Opt. Express (2017). https://doi.org/10.1364/OE.25.003954

    Article  Google Scholar 

  19. Kondorskiy, A.D., Lam, N.T., Lebedev, V.S.: Absorption and scattering of light by silver and gold nanodisks and nano prisms. J. Russ. Laser Res. (2018). https://doi.org/10.1007/s10946-018-9689-1

    Article  Google Scholar 

  20. Lechner, M.D.: Influence of mie scattering on nanoparticles with different particle sizes and shapes: photometry and analytical ultracentrifugation with absorption optics, original scientific paper UDC 54-72:535.342:543.48. J. Serb Chem. Soc. 70(3), 361–369 (2005)

    Article  Google Scholar 

  21. Lee, J.Y., Hong, H.G., Kim, Y.J.: Design and fabrication of semi-transparent screen using micro patterns and metal coating for head-up display, The Japan society of applied physics, 18th Microoptics Conference Tokyo Japan (2014)

  22. Li, C.C., Tseng, H.Y., Liao, H.C., Chen, H.M., Hsieh, T., Lin, S.A., Jau, H.C., Wu, Y.C., Hsu, Y.L., Hsu, W.H., Lin, T.H.: Enhanced image quality of OLED transparent display by cholesteric liquid crystal back-panel. Opt. Express (2017). https://doi.org/10.1364/OE.25.029199

    Article  Google Scholar 

  23. Liu, S., Sun, P., Wang, C., Zheng, Z.: Color waveguide transparent screen using lens array holographic optical element. ELSEVIER, Opt. Commun. (2017). https://doi.org/10.1016/j.optcom

    Article  Google Scholar 

  24. Loke, V.L.Y., Menguc, M.P., Nieminen, T.A.: Discrete-dipole approximation with surface interaction: a computational toolbox for MATLAB. ELSEVIER J. Quant. Spect. Rad. Trans. 112, 1711–1725 (2011)

    ADS  Article  Google Scholar 

  25. Macia, E.: The role of aperiodic order in science and technology Inst. Phys. Publ. 69, 397–441 (2006). https://doi.org/10.1088/0034-4885/69/2/R03

    Article  Google Scholar 

  26. Mahajan, S.M., Khedkar, S.B., Kasav, S.M.: Head-Up display techniques in cars. Int. J. Eng. Sci. Innov. Technol. 4(2), 119–124 (2015)

    Google Scholar 

  27. Merkus, H.G.: Particle size measurement fundamentals, practice, quality. Springer, Berlin (2009). (ISBN 978-1-4020-9015-8)

    Google Scholar 

  28. Mishchenko, M.I., Travis, L.D., Mackowski, D.W.: T-matrix computations of light scattering by nano spherical particles: a review. ELSEVIER, J. Quant. Spect. Rad. Trans. 55(5), 535–575 (1996)

    ADS  Article  Google Scholar 

  29. Negro, L.D., Boriskina, S.V.: Deterministic aperiodic nanostructures for photonics and plasmonic applications. Laser Photon. Rev. 6(2), 178–218 (2012). https://doi.org/10.1002/lpor.201000046

    ADS  Article  Google Scholar 

  30. Negro, L.D., Feng, N.N., Gopinath, A.: Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays. J. Opt. (2008). https://doi.org/10.1088/1464-4258/10/6/064013

    Article  Google Scholar 

  31. Numata, Y., Okuyama, k., Nakahara, T., Nakamura, T., Mizuno, M., Sugiyama, H., Nomura, S., Takeuchi, S., Oue, Y., Kato, H., Ito, S., Hasegawa, A., Ozaki, T., Douyou, M., Imai, T., Takizawa, K., Matsushima, S.: Highly transparent LCD using a new scattering-type liquid crystal with field sequential color edge light, IEEE, 24th International workshop on active–matrix flat panel displays and devices, Kyoto, Japan, 2017

  32. Okumura, H., Shinohara, K.: Human attention and fatigue for AR Head-Up display. IEEE Int. Symp. Mixed Augment. Real. Adj. Proc. (2016). https://doi.org/10.1109/ISMAR-Adjunct

    Article  Google Scholar 

  33. Palik, E.D.: Handbook of optical constants of solids, author and subject indices for volumes I, II, and III. Elsevier, Amsterdam (1998)

    Google Scholar 

  34. Piliarik, M., Kvasnicka, P., Galler, N., Krem, J.R., Homola, J.: Local refractive index sensitivity of plasmonic nanoparticles. Optic. Soc. Am. 19(10), 9213–9220 (2011)

    Google Scholar 

  35. Purcell, E.M., Pennypacker, C.R.: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186, 705–714 (1973)

    ADS  Article  Google Scholar 

  36. Qin, Z., Xie, J., Lin, F.C., Huang, Y.P., Shieh, H.P.D.: Evaluation of a transparent display’s pixel structure regarding the subjective quality of diffracted see-through images. IEEE Photon. J. (2017). https://doi.org/10.1109/JPHOT.2722000

    Article  Google Scholar 

  37. Raghuwanshi, M., Kumar, G.V.P.: Plasmonic nanowires arranged in Fibonacci number chain: extinction angle-dependent optical properties. AIP Adv. 3, 022112 (2013). https://doi.org/10.1063/1.4791766

    ADS  Article  Google Scholar 

  38. Ramaccia, D., Arcieri, S., Toscano, A., Bilotti, F.: Core-shell super-spherical nanoparticles for LSPR based sensing platforms. IEEE J. Select. Topics Quantum Electron. (2016). https://doi.org/10.1109/JSTQE.2016.2615851

    Article  Google Scholar 

  39. Rostami, A., Matloub, S.: Waveguiding properties of photonic quasicrystal heterostructures based on envelope approximation, IOP publishing. J. Opt. (2010). https://doi.org/10.1088/2040-8978/12/11/115503

    Article  Google Scholar 

  40. Rostami, A., Haddadpour, A., Nazari, F., Alipour, H.: Proposal for an ultra-compact tunable wavelength-division-multiplexing optical filter based on quasi-2D photonic crystals, IOP publishing. J. Opt. (2010). https://doi.org/10.1088/2040-8978/12/1/015405

    Article  Google Scholar 

  41. Schebarchov, D., Auguie, B., Ru, E.C.L.: Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells PCCP. Phys. Chem. 15, 4233–4242 (2013). https://doi.org/10.1039/C3CP44124E

    Article  Google Scholar 

  42. Schneider, J.B., Wagner, C.L., Ramahi, O.M.: Implementation of transparent sources in FDTD simulations. IEEE Trans. Antenna Prop. (1998). https://doi.org/10.1109/8.18570

    Article  Google Scholar 

  43. Sun, X.D., Liu, J.Q.: Light-emitting material integrated into a substantially transparent substrate, the United States Patent Application Publication, 6,986,581, (2006)

  44. Tsujimura, T.: OLED display fundamentals and applications, 2nd edn. Wiley, New Jersy (2017). https://doi.org/10.1002/9781119187493

    Google Scholar 

  45. Vardeny, Z.V., Nahata, A., Agrawal, A.: Optics of photonic quasicrystals. Nat. Photon. (2012). https://doi.org/10.1038/NPHOTON.2012.343

    Article  Google Scholar 

  46. Wiesner, C.A., Ruf, M., Sirim, D., Klinker, G.: Visualization of the electronic horizon in Head-up displays. IEEE Int. Symp. Mixed Augment. Real. Adjunct Proc. (2016). https://doi.org/10.1109/ISMAR-Adjunct

    Article  Google Scholar 

  47. Yang, L., Xu, X., Yuan, Y., Li, Z., He, S.: Meter-scale transparent conductive circuits based on silver nanowire networks for rigid and flexible transparent light-emitting diode screens. Opt. Mater. Express (2019). https://doi.org/10.1364/OME9.004483

    Article  Google Scholar 

  48. Yurkin, M.A., Hoekstra, A.G., Brock, R.S., Lu, J.Q.: Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers. Optic. Soc. Am. 15(26), 17902–17911 (2007)

    Google Scholar 

  49. Zou, S., Schatz, G.C.: Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays. J. Chem. Phys. (2004). https://doi.org/10.1063/1.1826036

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Rostami or S. Matloub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seyyedi, M., Rostami, A. & Matloub, S. Effect of morphology of nanoparticles on performance of transparent display. Opt Quant Electron 52, 308 (2020). https://doi.org/10.1007/s11082-020-02417-2

Download citation

Keywords

  • Transparent monitor
  • Deterministic array
  • FDTD
  • Core–shell nanoparticles
  • Morphology