Design of germanium core with anisotropic metamaterial cladding optical fiber in mid-infrared range applications

Abstract

A novel circular shaped metamaterial optical fiber with semiconductor core, metal/dielectric clad is numerically investigated. To surpass higher absorption loss and instability of noble metal, the core guiding medium of the fiber is comprised by crystalline germanium (Ge). The fiber is interrogated in terms of uniaxial permittivity, mode index, dispersion profile, effective area, nonlinearity, power fraction for different thickness (Cm = Cd, Cm > Cd, Cm < Cd) of Ag/Al2O3 using finite element method. In addition, it is shown how increased Ag/Al2O3 pair enhances optical properties especially for low loss which is reported as 0.025 dB/m with AMM cladding and 0.007 dB/m for layered cladding region. Hence, the proposed structure with comprising material is a promising candidate for mid-infrared applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Atakaramians, S., Argyros, A., Fleming, S.C., Kuhlmey, B.T.: Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions. J. Opt. Soc. Am. B: Opt. Phys. 29, 2462–2477 (2012)

    ADS  Article  Google Scholar 

  2. Ballato, J., Hawkins, T., Foy, P., Yazgan-Kokuoz, B., McMillen, C., Burka, L., Morris, S., Stolen, R., Rice, R.: Advancements in semiconductor core optical fiber. Opt. Fiber Technol 16, 399–408 (2010)

    ADS  Article  Google Scholar 

  3. Ballato, J., Hawkins, T., Foy, P., Morris, S., Hon, N.K., Jalali, B., Rice, R.: Silica-clad crystalline germanium core optical fibers. Opt. Express 21, 16690–16701 (2011)

    Google Scholar 

  4. Barati, M., Aghajamali, A.: Near-infrared tunable narrow filter properties in a 1D photonic crystal containing semiconductor metamaterial photonic quantum-well defect. Physica E 29, 20–25 (2016)

    ADS  Article  Google Scholar 

  5. Bian, Y., Gong, Q.: Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for high-performance optical waveguiding at sub-diffraction-limited scale. Sci. Rep. 4, 6617 (2014)

    ADS  Article  Google Scholar 

  6. Cox, J.D., de Abajo, F.J.G.: Nonlinear atom-plasmon interactions enabled by nanostructured graphene. Phys. Rev. Lett. 121, 257403 (2018)

    ADS  Article  Google Scholar 

  7. Desouky, M., Mahmoud, A.M., Swillam, M.A.: Tunable Mid IR focusing in InAs based semiconductor hyperbolic metamaterial. Sci. Rep. 10, 1–7 (2017)

    Google Scholar 

  8. Ding, P., Liang, E.J., Hu, W.Q., Zhang, L., Zhou, Q., Xue, Q.Z.: Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure. Photonics Nanostruct. Fundam. Appl. 7, 92–100 (2009)

    ADS  Article  Google Scholar 

  9. Haifeng, H., Ji, D., Zeng, X., Liu, K., Gan, Q.: Rainbow trapping in hyperbolic metamaterial waveguide. Sci. Rep. 3, 1249 (2013)

    Article  Google Scholar 

  10. Hammani, K., Ettabib, M.A., Bogris, A., Kapsalis, A., Syvridis, D., Brun, M., Labeye, P., Nicoletti, S., Richardson, D.J., Petropoulos, P.: Optical properties of silicon germanium waveguides at telecommunication wavelengths. Opt. Express 21, 16690–16701 (2013)

    ADS  Article  Google Scholar 

  11. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    ADS  Article  Google Scholar 

  12. Kieliszczyk, M., Janaszek, B., Tyszka-Zawadzka, A., Szczepanski, P.: Guided optical modes in metal-cladded tunable hyperbolic metamaterial slab waveguides. Crystals 10, 176 (2020)

    Article  Google Scholar 

  13. Kolinko, P., Smith, D.R.: Numerical study of electromagnetic waves interacting with negative index materials. Opt. Express 11, 640–648 (2003)

    ADS  Article  Google Scholar 

  14. Krishnamoorthy, H.N.S., Gholipour, B., Zheludev, N.I., Soci, C.: A non-volatile chalcogenide switchable hyperbolic metamaterial. Adv. Opt. Mater. 1800332, 1–6 (2018)

    Google Scholar 

  15. Kwon, D.-H., Werner, D.H., Kildishev, A.V., Shalaev, V.M.: Near-infrared metamaterials with dual-band negative-index characteristics. Opt. Express 15, 1647–1652 (2007)

    ADS  Article  Google Scholar 

  16. Li, H.H.: Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9, 1–98 (1980)

    Article  Google Scholar 

  17. Lin, Y., Cui, Y., Ding, F., Fung, K.H., Ji, T., Li, D., Hao, Y.: Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Opt. Mater. Express 7, 606–617 (2017)

    ADS  Article  Google Scholar 

  18. Maas, R., Parsons, J., Engheta, N., Polman, A.: Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 7, 907–912 (2013)

    ADS  Article  Google Scholar 

  19. Mahalakshmi, P., Venkatesh, S., Sumathi, M., Yamunadevi, R., Ayyanar, N., Rajan, M.S.M.: Manipulating high birefringence in elliptical core meta fiber by varying metal/dielectric concentration of the framed AMM. Opt. Quantum Electron. 49, 202 (2017)

    Article  Google Scholar 

  20. Mahalakshmi, P., Choudhury, P.K., Rajan, M.S.M., Sharma, M., Maheswar, R.: On the dual core anisotropic metamaterial clad polarization splitter. Optik 185, 1295–1302 (2019)

    ADS  Article  Google Scholar 

  21. Molesky, S., Dewalt, C.J., Jacob, Z.: High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermo photovoltaics. Opt. Express 21, 96–110 (2013)

    ADS  Article  Google Scholar 

  22. Nayak, C., Aghajamali, A., Saha, A., Das, N.: Near- and mid-infrared bandgaps in a 1D photonic crystal containing superconductor and semiconductor-metamaterial. Int. J. Mod. Phys. B 33, 1–13 (2019)

    Article  Google Scholar 

  23. Novitsky, A.V.: Negative-refractive-index fibres: TEM modes. J. Opt. A: Pure Appl. Opt. 8, 864–866 (2006)

    ADS  Article  Google Scholar 

  24. Ordu, M., Guo, J., Ng Pack, G., Shah, P., Ramachandran, S., Hong, M.K., Ziegler, L.D., Basu, S.N., Erramilli, S.: Nonlinear optics in germanium mid-infrared fiber material: detuning oscillations in femtosecond mid-infrared spectroscopy. AIP Adv. 7, 095125 (2017a)

    ADS  Article  Google Scholar 

  25. Ordu, M., Guo, J., Tai, B., et al.: Mid-infrared transmission through germanium-core borosilicate glass-clad semiconductor fibers. Opt. Mater. Express 7(9), 3107–3115 (2017b)

    ADS  Article  Google Scholar 

  26. Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, San Diego (1998)

    Google Scholar 

  27. Pekka, A., Tretyakov, S.: Electromagnetic cloaking with metamaterials. Mater. Today 12, 22–29 (2009)

    Google Scholar 

  28. Seongmin, J., Lee, Y., Jeong, S., Kim, Y., Kim, I.-S., Ko, D.-K., Han, W.-T.: Effect of Ge nanoparticles in the core of photonic crystal fiber on supercontinuum generation. J. Nanomater. 6824059, 1–7 (2019)

    Google Scholar 

  29. Shekhar, P., Atkinson, J., Jacob, Z.: Hyperbolic metamaterials: fundamentals and applications. Nano Converg. 1, 14 (2014)

    Article  Google Scholar 

  30. Smith, E.J., Liu, Z., Mei, Y., Schmidt, O.G.: Combined surface plasmon and classical waveguiding through metamaterial fiber design. Nano Lett. 10(1), 1–5 (2010)

    ADS  Article  Google Scholar 

  31. Stefaniuk, T., Olivier, N., Belardini, A., McPolin, C.P.T., Sibilia, C., Wronkowska, A.A., Wronkowski, A., Szoplik, T., Zayats, A.V.: Self-assembled silver–germanium nanolayer metamaterial with the enhanced nonlinear response. Adv. Opt. Mater 5, 1700753 (2017)

    Article  Google Scholar 

  32. Sui, K., Feng, X., Hou, Y., Zhang, Q., Qi, S., Wang, Y., Wang, P.: Glass-clad semiconductor germanium fiber for high-speed photodetecting applications. Opt. Mater. Express 7, 1211–1219 (2017)

    ADS  Article  Google Scholar 

  33. Sun, L., Yang, X., Wang, W., Gao, J.: Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials. J. Opt. 17, 035101 (2015)

    ADS  Article  Google Scholar 

  34. Tang, X., Kuhlmey, B.T., Stefani, A., Tuniz, A., Fleming, S.C., Agryros, A.: Electromagnetic wave propagation through air-core waveguide with metamaterial cladding. J. Lightwave Technol. 34, 5317–5324 (2016)

    ADS  Article  Google Scholar 

  35. Taya, S.A., Alkanoo, A.A., Ramanujam, N.R., Mahalakshmi, P., Vigneswaran, D.: Photonic crystal with epsilon negative and double negative materials as an optical sensor. Opt. Quantum Electron 50, 222 (2018)

    Article  Google Scholar 

  36. Vasilantonakis, N., Nasir, M.E., Dickson, W., Wurtz, G.A., Zayats, A.V.: Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photonics Rev. 9(3), 345–353 (2015)

    ADS  Article  Google Scholar 

  37. Xiong, Y., Liu, Z., Sun, C., Zhang, X.: Two-dimensional imaging by far-field superlens at visible wavelengths. Nano Lett. 7(11), 3360–3365 (2007)

    ADS  Article  Google Scholar 

  38. Yamunadevi, R., Raja, S.: Characteristics analysis of metamaterial based optical fiber. Opt. Int. J. Light Electron Opt. 127, 9377–9385 (2016)

    Article  Google Scholar 

  39. Yan, M., Mortensen, N., Qiu, M.: Engineering modes in optical fibers with metamaterial. Front. Optoelectron. China 2, 153–158 (2009)

    Article  Google Scholar 

  40. Zhang, Q., Jiang, T., Feng, Y.: Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding. J. Phys. D Appl. Phys. 44, 475103 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Mahalakshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, P., Prakash, S.A. & Rajan, M.S.M. Design of germanium core with anisotropic metamaterial cladding optical fiber in mid-infrared range applications. Opt Quant Electron 52, 298 (2020). https://doi.org/10.1007/s11082-020-02415-4

Download citation

Keywords

  • AMM cladding
  • Germanium
  • Uniaxial permittivity
  • Finite element method (FEM)