Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity

Abstract

In this paper, the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity is studied by adopting four mathematical methods namely the Modified Kudryashov method, the extended Tanh–Coth method, the modified simple equation method and soliton ansatz method. As a results, a set of various types of solitons that contains dark, singular, dark–singular, bright optical solitons and other form of optical soliton solutions are obtained. Firstly, we solve the perturbed nonlinear Schrödinger equation by considering the dual power law parameter using the first three integration methods and secondly we set this parameter equal to one in order, to solve the problem with the fourth method. The used methods in this paper present various applications in fields of nonlinear wave equations. Comparing our new results with well-known in literature are also given. Moreover, the graphical representations of the modulus of some optical soliton solutions and their 2-D profile are also depicted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbagari, S., et al.: N-rotating loop-soliton solution of the coupled integrable dispersionless equation. J. Appl. Math. Phys. 5, 1370–1379 (2014)

    Article  Google Scholar 

  2. Bekir, A.: Application of the (G’/G)-expansion method for nonlinear evolution equations. Phys. Lett. A 372, 3400–3406 (2008a)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. Bekir, A.: Applications of the extended tanh method for coupled nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 13, 1748–1757 (2008b)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. Bekir, A.: New solitons and periodic wave solutions for some nonlinear physical models by using the sine-cosine method. Phys. Scr. 77, 045008 (2008c)

    ADS  MATH  Article  Google Scholar 

  5. Bekir, A., Boz, A.: Exact solutions for nonlinear evolution equations using exp-function method. Phys. Lett A 372, 1619–1625 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. Biswas, A.: Temporal 1-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity. Progr. Electromagn. Res. 96, 1–7 (2009)

    Article  Google Scholar 

  7. Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)

    Google Scholar 

  8. Boudoue, M.H., et al.: Dispersive solitons in optical metamaterials having parabolic form of nonlinearity. Optik Int. J. Light Electron Opt. 179, 1009–1018 (2018)

    Google Scholar 

  9. Doka, S.Y., Mibaile, J., Gambo, B., Kofane, T.C.: Optical chirped soliton in metamaterials. Nonlinear Dyn. 90, 13–18 (2017)

    MathSciNet  Article  Google Scholar 

  10. Gambo, B., Bouetou, B., Kamgang, V.K., Kofane, T.C.: Dynamical survey of a generalized-Zakharov equation and its exact travelling wave solutions. Appl. Math. Comput. 217, 203–211 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Ghanbari, B., Osman, M.S., Baleanu, D.: Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative. Mod. Phys. Lett. A 34, 1950155 (2019)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. Houwe, A., et al.: Solitons solutions of nonlinear Schrödinger equation in the left-handed metamaterials by three different techniques. J. Phys. Commun. 3, 011002 (2019)

    Article  Google Scholar 

  13. Javid, A., Raza, N., Osman, M.S.: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun. Theor. Phys. 71, 362–366 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  14. Jawad, A.J.M., Biswas, A., et al.: Hamiltonian perturbation of optical solitons with parabolic law nonlinearity using three integration methodologies. Optik 160, 248–254 (2018)

    ADS  Article  Google Scholar 

  15. Kohl, R., Milovic, D., Zerrad, E., Biswas, A.: Soliton perturbation theory for dispersion-managed optical fibers. J. Nonlinear Opt. Phys. Mater. 18, 227–270 (2009)

    ADS  MATH  Article  Google Scholar 

  16. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. Liu, J.G., Osman, M.S., et al.: Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers. Appl. Phys. B 125, 175 (2019)

    ADS  Article  Google Scholar 

  18. Nestor, S., et al.: New solitary waves for the Klein–Gordon–Zakharov equations. Mod. Phys. Lett. B 34, 2050246 (2020a)

    Article  Google Scholar 

  19. Nestor, S., Betchewe, G., Inc, M., Doka, S.Y.: Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations. Eur. Phys. J. Plus 135, 380 (2020bb)

    Article  Google Scholar 

  20. Njikue, R., Bogning, J.R., Kofane, T.C.: Exact bright and dark solitary wave solutions of the generalized higher-order nonlinear Schrödinger equation describing the propagation of ultra-short pulse in optical fiber. J. Phys. Commun. 2, 025030 (2018)

    Article  Google Scholar 

  21. Osman, M.S.: Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2 + 1)-dimensional Kadomtsev–Petviashvili equation with variable coefficients. Nonlinear Dyn. 87(2), 1209–1216 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  22. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dyn. 96, 1491–1496 (2019a)

    Article  Google Scholar 

  23. Osman, M.S.: New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics. Pramana 93, 26 (2019b)

    ADS  Article  Google Scholar 

  24. Osman, M.S., Wazwaz, A.M.: A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti-Leon–Manna–Pempinelli equation. Math. Methods Appl. Sci. 42, 6277–6283 (2019)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. Osman, M.S., Rezazadeh, H., Eslami, M.: Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity. Nonlinear Eng. 8, 559–567 (2019a)

    ADS  Article  Google Scholar 

  26. Osman, M.S., Lu, D., Khater, M.M.A.: A study of optical wave propagation in the nonautonomous Schrödinger-Hirota equation with power-law nonlinearity. Results Phys. 13, 102157 (2019b)

    Article  Google Scholar 

  27. Rezazadeh, H.: New solitons solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity. Optik 167, 218–227 (2018)

    ADS  Article  Google Scholar 

  28. Rezazadeh, H., et al.: New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation. Optik 172, 545–553 (2018a)

    ADS  Article  Google Scholar 

  29. Rezazadeh, H., et al.: Mitigating internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik 164, 84–92 (2018b)

    ADS  Article  Google Scholar 

  30. Rezazadeh, H., Manafian, J., Khodadad, F.S., Nazari, F.: Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improved tan(1/2())-expansion method. Opt. Quant. Electron. 50(3), 121 (2018c)

    Article  Google Scholar 

  31. Rezazadeh, H., Osman, M.S., et al.: Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations. Nonlinear Eng. 8, 224–230 (2019)

    ADS  Article  Google Scholar 

  32. Savaissou, N., et al.: New Jacobi elliptic solutions and other solutions with quadratic-cubic nonlinearity using two mathematical methods. Asian Eur. J. Math. 13, 2050043 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  33. Seadawy, A.R.: Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods. Eur. Phys. J. Plus 132, 518 (2017a)

    Article  Google Scholar 

  34. Seadawy, A.R.: Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev–Petviashvili dynamical equation for dispersive shallow-water waves. Eur. Phys. J. Plus 132, 29 (2017b)

    Article  Google Scholar 

  35. Seadawy, A.R., Arshad, M., Lu, D.: Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov–Kuznetsov systems. Eur. Phys. J. Plus 132, 162 (2017)

    Article  Google Scholar 

  36. Wang, M., Li, X., Zhang, J.L.: Sub-ODE method and solitary wave solutions for higher order nonlinear Schrödinger equation. Phys. Lett. A 363, 96–101 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Yepez-Martinez, H., Rezazadeh, H., et al.: The extended modified method applied to optical solitons solutions in birefringent fibers with weak nonlocal nonlinearity and four wave mixing. Chin. J. Phys. 58, 137–150 (2019)

    Article  Google Scholar 

  39. Zayed, E.M.E., Abdelaziz, M.A.M.: The tanh function method using a generalized wave transformation for nonlinear equations. Int. J. Nonlinear Sci. Numer. Simul. 11, 595–601 (2010)

    Google Scholar 

  40. Zayed, E.M., Al-Nowehy, A.G.: Many new exact solutions to the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms using three different techniques. Optik 143, 84–103 (2017)

    ADS  Article  Google Scholar 

  41. Zhang, J.L., Wang, M., Li, X.: The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrödinger equation. Phys. Lett. A 357, 188–195 (2006)

    ADS  MATH  Article  Google Scholar 

  42. Zhou, Q., Yao, D.Z., Chen, F., et al.: Optical solitons with nonlinear dispersion in polynomial law medium. J. Optoelectron. Adv. Mater. 17, 82–86 (2015)

    Google Scholar 

Download references

Acknowledgements

The five authors of this work wish to thank the referees for their comments on this paper.

Funding

This research received no external funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmet Bekir.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savaissou, N., Gambo, B., Rezazadeh, H. et al. Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity. Opt Quant Electron 52, 318 (2020). https://doi.org/10.1007/s11082-020-02412-7

Download citation

Keywords

  • Integrability
  • Waves
  • Nonlinear optics