Dirac fermions in asymmetric graphene in electromagnetic field

Abstract

It is well-known that the asymmetry has dramatic effects on the properties of graphene. Therefore, here, a systematic study is presented to describe the effect of asymmetry on the Floquet oscillations in graphene. Even in the absence of external electromagnetic field, some kind of oscillations is predicted due to asymmetry. In pump-probe spectra, it is found that the amplitude of Floquet oscillations decreases in the presence of asymmetry in the graphene, however, the frequency of these oscillations increases. Moreover, the collapse and revival times are affected significantly due to asymmetry in graphene. The Bloch–Siegert shift is studied in the perspective of Floquet oscillation, called Floquet–Bloch–Siegert shift. A numerical simulation is performed to justify the role of asymmetry on Floquet oscillation in graphene.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen, L., Eberly, J.: Optical Resonances and Two-Level Atoms. lnterscience Monographs and Texts in Physics and Astronomy, vol. 28. Wiley, New York (1975)

    Google Scholar 

  2. Bloch, F., Siegert, A.: Magnetic resonance for nonrotating fields. Phys. Rev. 57(6), 522–527 (1940)

    ADS  Article  Google Scholar 

  3. Breusing, M., Kuehn, S., Winzer, T., Malić, E., Milde, F., Severin, N., Rabe, J.P., Ropers, C., Knorr, A., Elsaesser, T.: Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83(15), 153410 (2011)

    ADS  Article  Google Scholar 

  4. Cummings, F.W.: Stimulated emission of radiation in a single mode. Phys. Rev. 140, A1051–A1056 (1965)

    ADS  Article  Google Scholar 

  5. Dóra, B., Cayssol, J., Simon, F., Moessner, R.: Optically engineering the topological properties of a spin Hall insulator. Phys. Rev. Lett. 108(5), 056602 (2012)

    ADS  Article  Google Scholar 

  6. Dung, H.T., Tanaś, R., Shumovsky, A.S.: Collapses, revivals, and phase properties of the field in Jaynes–Cummings type models. Opt. Commun. 79(6), 462–468 (1990)

    ADS  Article  Google Scholar 

  7. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragon, J.J.: Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44(20), 1323–1326 (1980)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. Enamullah, V., Kumar, U., Kumar, G.S.S.: Strain effect on the nonlinear electromagnetic response of 2D carbon based material. Adv. Sci. Lett. 20(7–8), 1459–1462 (2014a)

    Article  Google Scholar 

  9. Enamullah, Kumar, V., Kumar, U., Kumar, G.S.S.: A theoretical study of pump-probe experiment in single-layer, bilayer and multilayer graphene. Pramana J. Phys. 82(6), 1085–1101 (2014b)

    ADS  Article  Google Scholar 

  10. Enamullah, Kumar, V., Kumar, U., Setlur G.S.: Quantum Rabi oscillations in graphene. JOSA B 31(3), 484–493 (2014c)

    ADS  Article  Google Scholar 

  11. Ficek, Z., Wahiddin, M.R.: Quantum Optics for Beginners. CRC Press, Boca Raton (2014)

    Google Scholar 

  12. Fukuoka, S., Taen, T., Osada, T.: Electronic structure and the properties of phosphorene and few-layer black phosphorus. J. Phys. Soc. Jpn. 84(12), 121004 (2015)

    ADS  Article  Google Scholar 

  13. Gric, T., Cada, M.: Analytic solution to field distribution in one-dimensional inhomogeneous media. Opt. Commun. 322, 183–187 (2014)

    ADS  Article  Google Scholar 

  14. Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)

    ADS  Article  Google Scholar 

  15. Haug, H., Koch, S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing Co Inc, Hackensack (2009)

    Google Scholar 

  16. Inoue, J., Tanaka, A.: Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105, 017401 (2010)

    ADS  Article  Google Scholar 

  17. Jafari, S.A.: Nonlinear optical response in gapped graphene. J. Phys. Condens. Matter 24(20), 205802 (2012)

    ADS  Article  Google Scholar 

  18. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Article  Google Scholar 

  19. Khan, E., Kumar, V., Setlur, G.S.: Crossover of coherent Rabi oscillations in graphene. Phys. B Condens. Matter 407(23), 4600–4609 (2012)

    ADS  Article  Google Scholar 

  20. Kitagawa, T., Oka, T., Brataas, A., Fu, L., Demler, E.: Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84(23), 235108 (2011)

    ADS  Article  Google Scholar 

  21. Kumar, V.: Relaxation dynamics of carriers in graphene. Adv. Sci. Lett. 24(8), 5666–5668 (2018)

    Article  Google Scholar 

  22. Kumar, U.: Anisotropic Floquet optical spectra of Weyl semimetal. Mater. Res. Express 6(9), 096304 (2019a)

    ADS  Article  Google Scholar 

  23. Kumar, U.: The effective role of Dirac mass in nonlinear optical spectra of silicene. JOSA B 36(5), 1222–1232 (2019b)

    ADS  Article  Google Scholar 

  24. Kumar, V., Enamullah, Kumar, U., Setlur G.S.: Coherent non-linear optical response in SU (2) symmetry broken single and bilayer graphene. Phys. B Condens. Matter 436, 140–148 (2014a)

    ADS  Article  Google Scholar 

  25. Kumar, U., Enamullah, Kumar, V., Setlur G.S.: Anomalous Bloch-Siegert effect in graphene. J. Nanosci. Lett. 4, 30 (2014b)

    Google Scholar 

  26. Kumar, V., Enamullah, Kumar, U., Setlur G.S.: Coherent nonlinear electromagnetic response in twisted bilayer and few-layer graphene. Pramana J. Phys. 83(4), 597–617 (2014c)

    ADS  Article  Google Scholar 

  27. Kumar, V., Enamullah, Kumar, U., Setlur G.S.: Band structure effects on the nonlinear optical response of bilayer graphene. Eur. Phys. J. B 87(3), 70 (2014d)

    ADS  Article  Google Scholar 

  28. Kumar, U., Kumar, V., Enamullah, Setlur G.S.: Band-anisotropy induced Bloch–Siegert shift in graphene. JOSA B 31(12), 3042–3049 (2014e)

    ADS  Article  Google Scholar 

  29. Kumar, U., Kumar, V., Enamullah, Setlur, G.S.: Signatures of bulk topology in the non-linear optical spectra of Dirac-Weyl materials. Eur. Phys. J. B 91(5), 86 (2018a)

    ADS  MathSciNet  Article  Google Scholar 

  30. Kumar, U., Kumar, V., Enamullah, Setlur, G.S.: Bloch-Siegert shift in Dirac–Weyl fermionic systems. In: AIP Conference Proceedings, vol. 1942, p. 120005. AIP Publishing (2018b)

  31. Kumar, U., Kumar, V., Enamullah, Setlur, G.S.: Quantum anomalous Bloch-Siegert shift in Weyl semimetal. In: AIP Conference Proceedings, vol. 1953, p. 030042. AIP Publishing (2018c)

  32. Kumar, U., Kumar, V., Setlur, G.S., et al.: Quantized transient nonlinear Rabi frequency response in Weyl semimetals. Mater. Today Proc. 9, 422–427 (2019a)

    Article  Google Scholar 

  33. Kumar, U., Kumar, V., Enamullah.: Anisotropic nonlinear optical response of phosphorene. Phys. E Low-dimens. Syst. Nanostruct. 108, 288–295 (2019b)

    ADS  Article  Google Scholar 

  34. Lindberg, M., Koch, S.W.: Effective Bloch equations for semiconductors. Phys. Rev. B 38(5), 3342–3350 (1988)

    ADS  Article  Google Scholar 

  35. Lindner, N.H., Refael, G., Galitski, V.: Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7(6), 490–495 (2011)

    Article  Google Scholar 

  36. Mishra, K.A., Almas, Kumar U.: Band tuning of a phosphorene semiconductor via floquet theory. J. Electron. Mater. 48(12), 8193–8205 (2019)

    ADS  Article  Google Scholar 

  37. Neto, A.H.C., Guinea, F., Peres, Nuno M.R., Novoselov, Kostya S., Geim, Andre K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    ADS  Article  Google Scholar 

  38. Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008)

    Article  Google Scholar 

  39. Oka, T., Aoki, H.: Photovoltaic Hall effect in graphene. Phys. Rev. B 79(8), 081406 (2009)

    ADS  Article  Google Scholar 

  40. Rabi, I.I.: Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652–654 (1937)

    ADS  MATH  Article  Google Scholar 

  41. Sandonas, L.M., Cuba-Supanta, G., Gutierrez, R., Dianat, A., Landauro, C.V., Cuniberti, G.: Enhancement of thermal transport properties of asymmetric graphene/hBN nanoribbon heterojunctions by substrate engineering. Carbon 124, 642–650 (2017)

    Article  Google Scholar 

  42. Schülzgen, A., Binder, R., Donovan, M.E., Lindberg, M., Wundke, K., Gibbs, H.M, Khitrova, G., Peyghambarian, N.: Direct observation of excitonic Rabi oscillations in semiconductors. Phys. Rev. Lett. 82(11), 2346–2349 (1999)

    ADS  Article  Google Scholar 

  43. Sentef, M.A., Claassen, M., Kemper, A.F., Moritz, B., Oka, T.: JK Freericks, andTP Devereaux. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015)

    ADS  Article  Google Scholar 

  44. Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138(4B), B979–B987 (1965)

    ADS  Article  Google Scholar 

  45. Stenholm, S.: Saturation effects in RF spectroscopy. I. General theory. J. Phys. B Atomic Mol. Phys. 5(4), 878–889 (1972)

    ADS  Article  Google Scholar 

  46. Vela-Arevalo, L.V., Fox, R.F.: Coherent states of the driven Rydberg atom: quantum-classical correspondence of periodically driven systems. Phys. Rev. A 71(6), 063403 (2005)

    ADS  Article  Google Scholar 

  47. Wolfram Research, Inc. Mathematica, Mathematica, Version 11.1. Champaign, IL (2017)

  48. Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.D., De Heer, W.A., Lee, D.H., Guinea, F., Neto, A.C., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6(10), 770–775 (2007)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, K.A., Kumar, V. Dirac fermions in asymmetric graphene in electromagnetic field. Opt Quant Electron 52, 309 (2020). https://doi.org/10.1007/s11082-020-02374-w

Download citation

Keywords

  • Asymmetric graphene
  • Floquet theory
  • Rabi oscillation
  • Collapse-revival phenomenon
  • Bloch–Seigert Shift
  • Pump-probe experiment