Skip to main content
Log in

Research on photoelectric properties of n-GaN (0001) surface with point defects via first-principles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In order to reveal the influence of n-type doping and point defects on the electronic and optical properties of GaN (0001) surface, the pristine and defective n-GaN (0001) surface models are established. The formation energy, work function, atomic structure, electronic and optical properties of these surfaces are discussed by first-principles calculations. The results show that the defects have the strong tendency to be close to the surface position, and the N interstitial defect (Ni) and the Ga vacancy (VGa) are easily formed. The work function of the surface with VGa drops the greatest, and the conductivity of n-type increases. In addition, the absorption coefficient of the surface with various defects is smaller than that of the pristine n-type surface. The appropriate amount of Ga vacancies can increase the probability of electron emission, but it is not conducive to the absorption of photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal, N., Krishna, S., Jain, S.K., et al.: Impact on photon-assisted charge carrier transport by engineering electrodes of GaN based UV photodetectors. J. Alloy. Compd. 785, 883–890 (2019)

    Article  Google Scholar 

  • Bawedin, M., Uren, M.J., Udrea, F.: DRAM concept based on the hole gas transient effect in a AlGaN/GaN HEMT. Solid State Electron. 54(6), 616–620 (2010)

    Article  ADS  Google Scholar 

  • Boguskawski, P., Briggs, E.L., Bernholc, J.: Native defects in gallium nitride. Phys. Rev. B 51(23), 17255–17258 (1995)

    Article  ADS  Google Scholar 

  • Chen, W., Chen, B., Yuan, J., et al.: Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode. Appl. Phys. Lett. 101, 052107 (2012)

    Article  ADS  Google Scholar 

  • Chen, C.-J., Chen, H.-C., Liao, J.-H., et al.: Fabrication and characterization of active-matrix 960 × 540 blue GaN-based micro-LED display. IEEE J. Quantum Electron. 55(2), 3300106 (2019)

    Google Scholar 

  • Darakchieva, V., Monemar, B., Usui, A., Saenger, M., Schubert, M.: Lattice parameters of bulk GaN fabricated by halide vapor phase epitaxy. J. Cryst. Growth 310(5), 959–965 (2008)

    Article  ADS  Google Scholar 

  • Dinh, P.M., Messud, J., Reinhard, P.G., et al.: Self-interaction correction in a simple model. Phys. Lett. A 372(34), 5598–5602 (2008)

    Article  ADS  Google Scholar 

  • Du, Y., Chang, B., Wang, H., et al.: First principle study of the influence of vacancy defects on optical properties of GaN. Chin. Opt. Lett. 10(5), 051601 (2012)

    Article  ADS  Google Scholar 

  • Fan, X., Xu, S., Li, P., et al.: Nonpolar and semipolar ultraviolet multiple quantum wells on GaN/sapphire. Mater. Sci. Semicond. Prog. 92(SI), 103–107 (2019)

    Article  Google Scholar 

  • Fu, K., Fu, H., Huang, X., et al.: Threshold switching and memory behaviors of epitaxially regrown GaN-on-GaN vertical p-n diodes with high temperature stability. IEEE Electron Devices Lett. 40(3), 375–378 (2019)

    Article  ADS  Google Scholar 

  • Gao, F., Bylaska, E.J., Weber, W.J.: Intrinsic defect properties in GaN calculated by ab initio and empirical potential methods. Phys. Rev. B 70(24), 245208 (2004)

    Article  ADS  Google Scholar 

  • Haase, D., Schmid, M., Kurner, W., et al.: Deep-level defects and n-type-carrier concentration in nitrogen implanted GaN. Appl. Phys. Lett. 69(17), 2525–2527 (1996)

    Article  ADS  Google Scholar 

  • Henry, T.A., Armstrong, A., Kelchner, K.M., et al.: Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 100(8), 082103 (2012)

    Article  ADS  Google Scholar 

  • Huang, J., Wan, Y., Jung, D., et al.: Defect characterization of InAs/InGaAs quantum dot p-i-n photodetector grown on GaAs-on-V-grooved-Si substrate. ACS Photonics 6, 1100–1105 (2019)

    Article  Google Scholar 

  • Park, J., Kang, D., Son, J.-K., et al.: Extraction of location and energy level of the trap causing random telegraph noise at reverse-biased region in GaN-based light-emitting diodes. IEEE Trans. Electron Devices 59(12), 3459–3502 (2012)

    Article  Google Scholar 

  • Kruszewski, P., Prystawko, P., Grabowski, M., et al.: Electrical properties of vertical GaN Schottky diodes on Ammono-GaN substrate. Mater. Sci. Semicond. Prog. 96, 132–136 (2019)

    Article  Google Scholar 

  • Kumar, A., Dhillon, J., Verma, S., et al.: Identification of swift heavy ion induced defects in Pt/n-GaN Schottky diodes by insitu deep level transient spectroscopy. Semicond. Sci. Technol. 33, 085008 (2018)

    Article  ADS  Google Scholar 

  • Lan, T., Zhou, G., Li, Y., et al.: Improvement of crystallinity and luminescence of GaN-based laser diode structure with suppressed curvature variation in active layers. Opt. Quantum Electron. 50(12), 434 (2018)

    Article  Google Scholar 

  • Lee, I.-H., Polyakov, A.Y., et al.: Electron traps as major recombination centers in n-GaN films grown by metalorganic chemical vapor deposition. Appl. Phys. Express 9, 061002 (2016)

    Article  ADS  Google Scholar 

  • Li, Y.R., Su, H.L., Hou, Z.T., et al.: Effect of Intrinsic defects on electronic and magnetic properties in Tm-doped GaN: first-principles calculations. J. Supercond. Novel Magn. 31(12), 3911–3917 (2018)

    Article  Google Scholar 

  • Li, H., Chang, C.-J., Kuo, S.-Y., et al.: Improved performance of near UV GaN-based light emitting diodes with asymmetric triangular multiple quantum wells. IEEE J. Quantum Electron. 55(1), 3200104 (2019)

    Article  Google Scholar 

  • Liliental-Weber, Z., Jasinski, J., Benamara, M., et al.: Influence of dopants on defect formation in GaN. Physica Status Solidi B-Basic Res. 228(2), 345–352 (2001)

    Article  ADS  Google Scholar 

  • Lyons, J.L., Van de Walle, C.G.: Computationally predicted energies and properties of defects in GaN. NPJ Comput. Mater. 3, 12 (2017)

    Article  ADS  Google Scholar 

  • Maize, K., Heller, E., Dorsey, D., et al.: Fast transient thermoreflectance CCD imaging of pulsed self heating in AlGaN/GaN power transistors. In: IEEE International Reliability Physics Symposium (IRPS), 2013, Vol. C.D., pp. 1–3

  • Mamor, M., Matias, V., Vantomme, A., et al.: Defects induced in GaN by europium implantation. Appl. Phys. Lett. 85(12), 2244–2246 (2004)

    Article  ADS  Google Scholar 

  • Mattila, T., Nieminen, R.M.: Point-defect complexes and broadband luminescence in GaN and AlN. Phys. Rev. B 55(15), 9571–9576 (1977)

    Article  ADS  Google Scholar 

  • Miotto, R., Srivastava, G.P., Ferraz, A.C.: Effects of gradient and non-linear core corrections on structural and electronic properties of GaN bulk and (001) surfaces. Physica B 292(1–2), 97–108 (2000)

    Article  ADS  Google Scholar 

  • Moujahed, G., Abdelhamid, H., Hassen, M., et al.: DC and RF characteristics optimization of AlGaN/GaN/BGaN/GaN/Si HEMT for microwave-power and high temperature application. Results Phys. 12, 302–306 (2019)

    Article  Google Scholar 

  • Nishitani, T., Amano, H.: Photocathode electron beam sources using GaN and InGaN with NEA surface. In: Proceedings of SPIE—The International Society for Optical Engineering, 2015, Vol. 9363:93630T

  • Py, M.A., Zellweger, C., Wagner, V., et al.: Characterization of deep levels in n-GaN by combined capacitance transient techniques. Phys. Status Solid A Appl. Mater. Sci. 202(4), 572–577 (2005)

    Article  ADS  Google Scholar 

  • Rogozin, I.V., Georgobiani, A.N.: On the mechanism of GaN layer growth and defect formation in the GaN-GaAs system. Bull. Lebedev Phys. Inst. 34(4), 114–118 (2007)

    Article  ADS  Google Scholar 

  • Sangwan, V., Kapoor, D., Tan, C.M., et al.: High-frequency electromagnetic simulation and optimization for GaN-HEMT power amplifier IC. IEEE Trans. Electromagn. Compat. 61(2), 564–571 (2019)

    Article  Google Scholar 

  • Segall, M.D., Lindan, P.J.D., Probert, M.J., et al.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14(11), 2717–2744 (2002)

    Article  ADS  Google Scholar 

  • Van de Walle, C.G., Neugebauer, J.: First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95(8), 3851–3879 (2004)

    Article  ADS  Google Scholar 

  • Wang, H., Zhang, H., Liu, J., et al.: Hydroxyl group adsorption on GaN (0001) surface: first principles and XPS studies. J. Electron. Mater. 48(4), 2430–2437 (2019)

    Article  ADS  Google Scholar 

  • Yang, Z., Li, L.K., Alperin, J., et al.: Nitrogen vacancy as the donor: experimental evidence in the ammonia-assisted molecular beam epitaxy of GaN. J. Electrochem. Soc. 144(10), 3474–3478 (1997)

    Article  Google Scholar 

  • Yang, M., Chang, B., Wang, M.: Atomic geometry and electronic structure of Al0.25Ga0.75N (0001) surfaces covered with different coverages of cesium: a first-principle research. Appl. Surf. Sci. 326, 251–256 (2015)

    Article  ADS  Google Scholar 

  • Yang, M., Fu, X., Guo, J., Rao, W.: Electronic structure and optical properties of Al0.25Ga0.75N with point defects and Mg-defect complexes. Opt. Quantum Electron. 50(2), 60 (2018)

    Article  Google Scholar 

  • Yujie, Du, Benkang, Chang, Xiaohui, Wang, Junju, Zhang, Biao, Li, Meishan, Wang: Theoretical study of Cs adsorption on GaN(0001) surface. Appl. Surf. Sci. 258(19), 7425–7429 (2012)

    Article  Google Scholar 

  • Zhang, Z., Schwingenschloegl, U., Roqan, I.S.: Vacancy complexes induce long-range ferromagnetism in GaN. J. Appl. Phys. 116(18), 183905 (2014)

    Article  ADS  Google Scholar 

  • Zhao, H.-X., Guo, Z.-Y., Zeng, K., et al.: Electronic structure and the optical properties of GaN (0001) surface from first-principles study. In: Proceedings of the SPIE—The International Society for Optical Engineering, 2009, Vol. 7518:7518B

Download references

Acknowledgements

This work is supported by Qing Lan Project of Jiangsu Province-China (Grant No. 2017-AD41779), the Fundamental Research Funds for the Central Universities-China (Grant No. 30916011206) and the Six Talent Peaks Project in Jiangsu Province-China (Grant No. 2015-XCL-008). Meishan Wang of Ludong University is greatly appreciated for the help of first principle calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Y., Liu, L. & Lu, F. Research on photoelectric properties of n-GaN (0001) surface with point defects via first-principles. Opt Quant Electron 51, 211 (2019). https://doi.org/10.1007/s11082-019-1940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1940-7

Keywords

Navigation