Skip to main content
Log in

The numerical investigation of colliding optical solitons as an all-optical-gate using the method of Lines

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The bidirectional propagation and collision of counter-propagating optical solitons in a two-level resonant medium is analyzed. For sufficiently short duration of the pulses and sufficiently high power levels, self-induced transparency allows the pulses to propagate without losses at anomalously low velocities. Here, we use an extended semiclassical approach, called Maxwell–Bloch model. The quantization of the electromagnetic field is neglected, however, a full quantum mechanical formulation is used to describe the behavior of the matter. The numerical simulations are performed by using the method of lines. For improved accuracy, spline interpolation of the fields is introduced. Results are presented to demonstrate the use of soliton collision for all-optical switching, in particular, as OR- and XOR-gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified according to Hutzler (2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afanasev, A., Volkov, V., Dritz, V., Samson, B.: Interaction of counterpropagating self-induced transparency solitons. J. Mod. Opt. 37, 165–170 (1990)

    Article  ADS  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, Boston (2007)

    MATH  Google Scholar 

  • Alcock, C.B., Itkin, V.P., Horrigan, M.K.: Vapor pressure equations for the metallic elements: 298–2500 K. Can. Metall. Q. 23, 309–313 (1984)

    Article  Google Scholar 

  • Beeker, W., Lee, C., Can, E., Boller, K.: Storage by trapping and spatial staggering of multiple interacting solitons in \(\varLambda\)-type media. Phys. Rev. Lett. A 82, 053839 (2010)

    Google Scholar 

  • Curtiss, C.F., Hirschfelder, J.O.: Integration of Stiff equations. Proc. Nat. Acad. Sci. U.S.A. 38, 235–243 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  • Frantzeskakis, D.J., Leblond, H., Mihalache, D.: Nonlinear optics of intense few-cycle pulses: an overview of recent theoretical and experimental developments. Rom. J. Phys. 59 (no.7–8), 767–784 (2014)

    Google Scholar 

  • Hamdi, S., Schiesser, W.E., Griffiths, G.W.: Method of lines. Scholarpedia 2(7), 2859 (2007). https://doi.org/10.4249/scholarpedia.2859

    Article  ADS  Google Scholar 

  • Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd edn. Dover, New York (1987)

    MATH  Google Scholar 

  • Hutzler, M.: Collisions of optical solitons in two-level media. M.Sc. Thesis, FernUniversität in Hagen (2014)

  • Islam, M., Soccolich, C., Gordon, J.: Ultrafast digital soliton logic gates. Opt. Quantum Electron. 24, 1215–1235 (1992)

    Article  Google Scholar 

  • Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 82nd edn. CRC Press, Boca Raton (2001)

    Google Scholar 

  • Malomed, B., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, 53–72 (2005)

    Article  ADS  Google Scholar 

  • McCall, S.L., Hahn, E.: Self-induced transparency. Phys. Rev. Lett. 183, 457–489 (1969)

    ADS  Google Scholar 

  • Miller, D.A.B.: Quantum Mechanics for Scientists and Engineers. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  • Milonni, W., Eberly, J.: Laser Physics, Chap. 9, Coherence in Atom-Field Interactions. Wiley, New York (2010)

    Google Scholar 

  • Mohr, P.J., Taylor, B.N., Newell, D.B.: The 2006 CODATA Recommended Values of the Fundamental Physical Constants, Web Version 5.1. available at http://physics.nist.gov/constants (National Institute of Standards and Technology, Gaithersburg, MD 20899, 31 December 2007 (2007). Accessed 1 Aug 2018

  • Novitsky, D.: Femtosecond pulses in a dense two-level medium: spectral transformations, transient processes, and collisional dynamics. Phys. Rev. Lett. A 84, 013817 (2011)

    Article  ADS  Google Scholar 

  • Novitsky, D.: Controlled absorption and all-optical diode action due to collisions of self-induced-transparency solitons. Phys. Rev. Lett. A 85, 043813 (2012)

    Article  ADS  Google Scholar 

  • Novitsky, D.: Ultrashort pulses in an inhomogeneously broadened two-level medium: soliton formation and inelastic collisions. J. Phys. B Atomic Mol. Opt. Phys. 47, 095401 (2014)

    Article  ADS  Google Scholar 

  • Pregla, R.: Analysis of Electromagnetic Fields and Waves—The Method of Lines. Wiley, Chichester (2008)

    Book  Google Scholar 

  • Pusch, A., Hamm, J.M., Hess, O.: Controllable interaction of counterpropagating solitons in three-level media. Phys. Rev. A 82, 023805 (2010)

    Article  ADS  Google Scholar 

  • Saleh, B., Teich, M.: Fundamentals of Photonics. Wiley, New York (2007)

    Google Scholar 

  • Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Shaw, M., Shore, B.: Collisions of counterpropagating optical solitons. J. Opt. Soc. Am. B 8, 1127–1134 (1991)

    Article  ADS  Google Scholar 

  • Slusher, R., Gibbs, H.: Self-induced transparency in atomic rubidium. Phys. Rev. A 5, 1634–1659 (1972)

    Article  ADS  Google Scholar 

  • Steck, D.: Rubidium 87 D Line Data. http://steck.us/alkalidata, vol. revision 2.0.1 (2008)

  • Valcarcel, G., Roldan, E.: Semiclassical theory of amplification and lasing. Revista Mexicana de Fisica E 52, 198–214 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

The analysis presented here was based on earlier work by Hutzler (2014). The advice by Klaus Boller (University of Twente) in this context is greatly appreciated. Furthermore, we thank Marina Haase and Nikolas Henry for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Spiller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling, OQTNM 2018.

Guest Edited by Stefan Helfert, Manfred Hammer, Dirk Schulz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiller, W., Helfert, S.F. & Jahns, J. The numerical investigation of colliding optical solitons as an all-optical-gate using the method of Lines. Opt Quant Electron 51, 131 (2019). https://doi.org/10.1007/s11082-019-1785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1785-0

Keywords

Navigation