Skip to main content
Log in

Nonlinear planar optical waveguide sensors comprising metamaterial guiding films at terahertz frequencies

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we propose a metamaterial film bounded by a nonlinear cover and a dielectric substrate as a THz wave sensor. The dispersion characteristics and magnetic field profiles have been derived, computed and analyzed. Confinement of the light waves was found to increase with both nonlinearity and frequency. We believe our results can be used to design novel tunable future sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadla, M., Shabat, M., Jäger, D.: Mathematical simulation of nonlinear optical wave guided sensors. Proc. SPIE 5445, 324–327 (2003)

    ADS  Google Scholar 

  • Abadla, M., Shabat, M., Jager, D.: Simulation of sensitivity characteristics in optical nonlinear wave guide sensors. Laser Phys. 14(9), 1–7 (2004a)

    Google Scholar 

  • Abadla, M., Shabat, M., Jager, D.: Characteristics of nonlinear waveguides sensors with metallic core films. Laser Phys. 14(12), 1524–1528 (2004b)

    Google Scholar 

  • Abadla, M., Taya, S., Shabat, M.: Four layer slab waveguide sensors supported with left handed materials. Sens. Lett. 9(5n), 1823–1829 (2011)

    Article  Google Scholar 

  • Ajith, R., Mathew, V.: Dispersion characterestics of surface Plasmon polariton modes in a metallic slab waveguide with nonlinear magnetic cladding. J. Appl. Phys. 114, 214311 (2013)

    Article  ADS  Google Scholar 

  • Awasthi, S., Ojha, S.: Wide-angle, broadband plate polarizer with 1D photonic crystal. Prog. Electromagn. Res. PIER 88, 321–335 (2008)

    Article  Google Scholar 

  • Awasthi, S.K., et al.: Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma. Phys. Plasmas 25, 052103 (2018)

    Article  ADS  Google Scholar 

  • Boardman, A., Shabat, M., Wallis, R.: Non-linear magneto dynamics waves on magnetic materials. Phys. Rev. B 41(1), 717–730 (1990)

    Article  ADS  Google Scholar 

  • Boardman, A., Shabat, M., Wallis, R.: TE waves at an interface between linear gyro magnetic and nonlinear dielectric media. J. Phys. D Appl. Phys. 24, 1702–1707 (1991)

    Article  ADS  Google Scholar 

  • Cai, W., Shalaev, V.: Optical Metamaterials. Springer, New York (2010)

    Google Scholar 

  • Cao, Q., Jahns, J.: Azimuthally polarized surface plasmons as effective terahertz waveguides. Opt. Express 13(2), 511–518 (2005)

    Article  ADS  Google Scholar 

  • Degiron, A., Smith, D.: Nonlinear long-range plasmonic waveguides. Phys. Rev. A 82, 033812 (2010)

    Article  ADS  Google Scholar 

  • Ghosh, S., Bhattacharyya, S., Kaiprath, Y., Srivastava, K.: Bandwidth- enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115(10), 104503 (2014)

    Article  ADS  Google Scholar 

  • Govind, D., Ramakrishna, S.: Design of highly absorbing metamaterials for Infrared frequencies. Opt. Express 20(16), 17503–17508 (2012)

    Article  ADS  Google Scholar 

  • Hao, J., Wang, J., Liu, X., et al.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010)

    Article  ADS  Google Scholar 

  • Horváth, R., Fricsovszky, G., Papp, E.: Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition. Biosens. Bioelectron. 18, 415–428 (2003)

    Article  Google Scholar 

  • Huang, C., Liu, H., Zhang, X., Lee, C.: Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces. Opt. Express 21(5), 6519–6525 (2013)

    Article  ADS  Google Scholar 

  • Isaac, T.: Tunable plasmonic structures for terahertz Frequencies (Ph.D. Thesis), University of Exeter, UK (2009)

  • Klainer, S., Coulter, S., Pollina, R., Saini, D.: Advances in miniature optical waveguide sensors. Sens. Actuators B 38–39, 176–182 (1997)

    Article  Google Scholar 

  • Kunz, R.: Miniature integrated optical modules for chemical and biochemical sensing. Sens. Acuators B 38–39, 13–28 (1997)

    Article  Google Scholar 

  • Lin, Q., Painter, O., Agrawal, G.: Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604–16644 (2007)

    Article  ADS  Google Scholar 

  • Liu, X., Padilla, W.: Dynamic manipulation of infrared radiation with MEMS metamaterials. Adv. Opt. Mater. 1(8), 559–562 (2013)

    Article  Google Scholar 

  • Mends, R., Grischkowsky, D.: Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001)

    Article  ADS  Google Scholar 

  • Mittleman, D.M.: Sensing with Terahertz Radiation. Springer, Heidelberg (2002)

    Google Scholar 

  • Mousa, H.: Nonlinear electromagnetic TM surface waves in magnetic superlattices (LANS) film. J. Islamic Univ. 15, 147–155 (2007)

    Google Scholar 

  • Mousa, H., Shabat, M.: Nonlinear TE surface in a left-handed material and superlattices wave-guide structures. Int. J. Modern Phys. B 21(6), 895–906 (2007)

    Article  ADS  Google Scholar 

  • Mousa, H., Shabat, M.: TM polarized terahertz waves in left-handed cylindrical materials. Int. J. Microw. Opt. Technol. 10(2), 89–94 (2015a)

    Google Scholar 

  • Mousa, H., Shabat, M.: Simulation of asymmetry metamaterial waveguide absorber (TE&TM). Energy Procedia 74, 597–607 (2015b)

    Article  Google Scholar 

  • Mousa, H., Abadla, M., Shabat, M.: Characteristics of surface waves in LHM ferrite semiconductor waveguides. Funct. Mater. 18(2), 230–236 (2011)

    Google Scholar 

  • Parriaux, O., Veldhuis, G.: Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J. Lightwave Technol. 16, 573–582 (1998)

    Article  ADS  Google Scholar 

  • Parriaux, O., et al.: Normalized optimization of second harmonic effects in slab waveguides. Opt. Commun. 152, 161–167 (1998)

    Article  ADS  Google Scholar 

  • Pendry, J., Schurig, D., Smith, D.: Controlling electromagnetic fields. Science 312, 1777–1779 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Pitchappa, P., Pei-Ho, C., Kropelnicki, P., et al.: Switchable near infrared complementary metamaterial absorber. Appl. Phys. Lett. 104, 201114 (2014)

    Article  ADS  Google Scholar 

  • Prieto, F., et al.: Design and analysis of silicon antiresonant reflecting optical waveguides for evanscent field sensor. J. Lightwave Tech 18, 966–972 (2000)

    Article  ADS  Google Scholar 

  • Quing, D., Chen, X., Itoh, K., Murabayashi, M.: A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method. J. Lightwave Technol. 14, 1907–1917 (1996)

    Article  ADS  Google Scholar 

  • Shabat, M., Khalil, H., Taya, S., Abadla, M.: Analysis of the sensitivity of self-focused nonlinear optical evanescent waveguide sensors. Int. J. Optomechatron. 1, 284–296 (2007)

    Article  Google Scholar 

  • Smith, P.R., Auston, D.H., Nuss, M.C.: Subpicosecond photoconducting dipole antennas. IEEE. J. Quant. Electron. 24, 255–260 (1988)

    Article  ADS  Google Scholar 

  • Srivastava, S.K., Ojha, S.P.: Enhancement of omnidirectional reflection band in one-dimensional photonic crystals with left-handed materials. Prog. Electromagn. Res. PIER 68, 91–111 (2007)

    Article  Google Scholar 

  • Taya, S., El-Farram, E., Abadla, M.: symmetric multilayer slab wg structure with a negative index material: TM case. Optik 123, 2264–2268 (2012)

    Article  ADS  Google Scholar 

  • Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 6(2), 209–220 (1989)

    Article  ADS  Google Scholar 

  • Wang, X., Zhai, X., Wang, G., Huang, W., Wang, L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7(1), 4600108 (2015)

    Google Scholar 

  • Zare, Z., Gharaati, A.: Investigation of band gap width in ternary 1D photonic crystal with left-handed layer. Acta Physica Pol. 125(1), 36–38 (2014)

    Article  Google Scholar 

  • Zou, T., et al.: Terahertz Spectra of Ninhydrin and Indane-1,2,3-Trione. J. Infrared Millim. Terahertz Waves 38(7), 896–908 (2017)

    Article  Google Scholar 

  • Zourob, M., et al.: Bacteria detection using disposable optical leaky waveguide sensors. Biosens. Bioelectron. 21, 293–302 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Abadla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadla, M.M., Mousa, H.M. & Shabat, M.M. Nonlinear planar optical waveguide sensors comprising metamaterial guiding films at terahertz frequencies. Opt Quant Electron 50, 394 (2018). https://doi.org/10.1007/s11082-018-1669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1669-8

Keywords

Navigation