Skip to main content
Log in

Ultrashort optical pulse repetition rate multiplication based on two-core-fiber Mach–Zehnder interferometer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we propose a much compact ultrashort optical pulse repetition rate multiplication approach based on two-core-fiber Mach–Zehnder interferometer. Since the temporal period is approximately inverse-proportional to its spectral spacing, the repetition rate of output pulses can be doubled (Multiplication factor N = 2) by selecting the proper modes and suppressing the undesired spectral lines. Influences of the input frequency deviation and the input/output coupling coefficients (Cin, Cout) on the quality of multiplied pulses are investigated. Results demonstrate that the multiplication scheme works well for the input frequency deviation of 3% and Cin (Cout) ranging from 0.4 to 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkins, S., Fischer, B.: All-optical pulse rate multiplication using fractional Talbot effect and field-to-intensity conversion with cross-gain modulation. IEEE Photonics Technol. Lett. 15(1), 132–134 (2003)

    Article  ADS  Google Scholar 

  • Azana, J., Muriel, M.A.: Temporal self-imaging effects: theory and Application for multiplying pulse repetition rates. IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001)

    Article  ADS  Google Scholar 

  • Beger, N.K., Vodonos, B., Atkins, S., Smulakovsky, V., Bekker, A., Fischer, B.: Compression of periodic pulses using all-optical repetition rate multiplication. Opt. Commun. 217, 343–349 (2003)

    Article  ADS  Google Scholar 

  • Cheng, H., Zhou, Y., Mironov, A.E., Wang, W., Qiao, T., Lin, W., Qian, Q., Xu, S., Yang, Z., Eden, J.G.: Mode suppression of 53 dB and pulse repetition rate of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot acvities of low finesse (F = 2). Opt. Express 25(20), 024400–024409 (2017)

    Article  Google Scholar 

  • Ciaramella, E., Contestabile, G., D’Errico, A., Loiacono, C., Presi, M.: High-power widely tunable 40 GHz pulse source for 160 Gb/s OTDM systems based on nonlinear fiber effects. IEEE Photonics Technol. Lett. 16, 753–755 (2004)

    Article  ADS  Google Scholar 

  • Fok, M.P., Tang, W.W., Shu, C.: Repetition rate multiplication of multi-wavelength pulses by spectral elimination with a birefringence loop mirror filter. Opt. Express 13(12), 4752–4758 (2005)

    Article  ADS  Google Scholar 

  • Fok, M.P., Tang, W.W., Shu, C.: Higher order repetition rate multiplication for multi-wavelength pulsed source. IEEE Photonics Technol. Lett. 18(3), 466–468 (2006)

    Article  ADS  Google Scholar 

  • Geng, Z., Xie, Y., Zhuang, L., Burla, M., Hoekman, M., Roeloffzen, C.G.H., Lowery, A.J.: Photonic integrated circuit implementation of a sub-GHz-selectivity frequency comb filter for optical clock multiplication. Opt. Express 25(22), 27635–27645 (2017)

    Article  ADS  Google Scholar 

  • Kielpinski, D., Gat, O.: Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking. Opt. Express 20(3), 2717–2724 (2012)

    Article  ADS  Google Scholar 

  • Lee, J.H., Chang, Y.M., Han, Y.-G., Kim, S.H., Lee, S.B.: 2 ~ 5 times tunable repetition rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating. Opt. Express 12(17), 3900–3905 (2004)

    Article  ADS  Google Scholar 

  • Preciado, M.A., Muriel, M.A.: All-pass optical structures for repetition rate multiplication. Opt. Express 16(15), 11161–11168 (2008)

    Article  ADS  Google Scholar 

  • Seo, D.S., Leaird, D.E., Weiner, A.M., Kamei, S., Ishii, M., Sugita, A., Okamoto, K.: Continuous 500 GHz pulse train generation by repetition-rate multiplication using arrayed waveguide grating. Electron. Lett. 39, 1138–1140 (2003)

    Article  Google Scholar 

  • Tainta, S., Erro, M.J., Amaya, W., et al.: Periodic Time-domain modulation for the electically tunable control of optical pulse train envelope and repetition rate multiplication. IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012)

    Article  ADS  Google Scholar 

  • Wang, S., Hui, W.: Experimental demonstation of microring-based optical pulse train generator. Opt. Express 19(17), 16259–16265 (2011)

    Article  ADS  Google Scholar 

  • Wu, D.S., Richardson, D.J., Slavik, R.: Optical Fourier synthesis of high-repetition rate pulses. Optica 2(1), 18–26 (2015)

    Article  Google Scholar 

  • Xia, B., Chen, L.R.: A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping. IEEE J. Sel. Top. Quantum Electron. 11(1), 165–172 (2005)

    Article  ADS  Google Scholar 

  • Xia, B., Chen, L.R.: Ring resonator arrays for pulse repetition rate multiplication and shaping. IEEE Photonics Technol. Lett. 18(19), 1999–2001 (2006)

    Article  ADS  Google Scholar 

  • Yiannopoulos, K., Vyrsokinos, K., Kehayas, E., Pleros, N., Vlachos, K., Avramopoulos, H., Guekos, G.: Rate multiplication by double-passing Fabry-Perot filtering. IEEE Photonics Technol. Lett. 15, 1294–1296 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation (Grant No. 61007007), the talents of North China University of Technology (CCXZ201307) and Foundation of China Scholarship Council (No. 201708110009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Xu, M. & Pang, L. Ultrashort optical pulse repetition rate multiplication based on two-core-fiber Mach–Zehnder interferometer. Opt Quant Electron 50, 306 (2018). https://doi.org/10.1007/s11082-018-1575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1575-0

Keywords

Navigation