Advertisement

Analysis of fiber optic SPR sensor utilizing platinum based nanocomposites

Article

Abstract

SPR based fiber optic sensor using nanocomposite is presented. Nanocomposites comprising of Pt nanoparticles with various volume fractions embedded in dielectric matrices of TiO2 and SnO2 are considered. Sensitivity enhances with increase in thickness of nanocomposite and volume fraction of nanoparticles for both nanocomposites. Optimized thicknesses are obtained to be 40 and 50 nm for Pt–TiO2 and Pt–SnO2 nanocomposites respectively while optimized volume fraction is found to be 0.85 for both nanocomposites. 40 nm thick Pt–TiO2 nanocomposite based sensor with 0.85 volume fraction possesses utmost sensitivity.

Keywords

SPR Optical fiber Nanocomposite Platinum Sensor 

Notes

Acknowledgements

Navneet K. Sharma thankfully acknowledges Defence Research & Development Organization (DRDO), India for the financial support provided through the Project Number ERIP/ER/DG-ECS/990116205/M/01/1687.

References

  1. Devore, J.R.: Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–417 (1951)ADSCrossRefGoogle Scholar
  2. Ghatak, A.K., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1999)Google Scholar
  3. Harris, R.D., Wilkinson, J.S.: Waveguide surface plasmon resonance sensors. Sens. Actuator B 29, 261–267 (1995)CrossRefGoogle Scholar
  4. Homola, J.: Optical fiber sensor based on surface plasmon excitation. Sens. Actuator B 29, 401–405 (1995)CrossRefGoogle Scholar
  5. Homola, J.: On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuator B 41, 207–211 (1997)CrossRefGoogle Scholar
  6. Kretschmann, E.: Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmashwingungen. Zeits Phys. 241, 313–324 (1971)ADSGoogle Scholar
  7. Kretschmann, E., Reather, H.: Radiative decay of non-radiative surface plasmons excited by light. Zeits Naturforsch 23, 2135–2136 (1968)ADSGoogle Scholar
  8. Liedberg, B., Nylander, C., Sundstrom, I.: Surface plasmon resonance for gas detection and biosensing. Sens. Actuator B 4, 299–304 (1983)CrossRefGoogle Scholar
  9. Lin, W.B., Jaffrezic-Renault, N., Gagnaire, A., Gagnaire, H.: The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sens. Actuator B 84, 198–204 (2000)CrossRefGoogle Scholar
  10. Manera, M.G., Spadavecchia, J., Buso, D., Fernandez, C.J., Mattei, G., Martucci, A., Mulvaney, P., Perez-Juste, J., Rella, R., Vasanelli, L., Mazzoldi, P.: Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sens. Actuator B 132, 107–115 (2008)CrossRefGoogle Scholar
  11. Niklasson, G.A., Granqvist, C.G., Hunderi, O.: Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20, 26–30 (1981)ADSCrossRefGoogle Scholar
  12. Ordal, M.A., Bell, R.J., Alexander Jr., R.W., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)ADSCrossRefGoogle Scholar
  13. Shah, K., Sharma, N.K., Sajal, V.: SPR based fiber optic sensor with bi layers of indium tin oxide and platinum: a theoretical evaluation. Optik 135, 50–56 (2017)ADSCrossRefGoogle Scholar
  14. Shah, K., Sharma, N.K., Sajal, V.: Simulation of LSPR based fiber optic sensor utilizing layer of platinum nanoparticles. Optik 154, 530–537 (2018)ADSCrossRefGoogle Scholar
  15. Shamala, K.S., Murthy, L.C.S., Rao, K.N.: Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods. Bull. Mater. Sci. 27, 295–301 (2004)CrossRefGoogle Scholar
  16. Sharma, A.K., Gupta, B.D.: Absorption based fiber optic surface plasmon resonance sensor: a theoretical evaluation. Sens. Actuator B 100, 423–431 (2004)CrossRefGoogle Scholar
  17. Sharma, A.K., Gupta, B.D.: On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101, 093111 (2007)Google Scholar
  18. Sharma, N.K., Rani, M., Sajal, V.: Surface plasmon resonance based fiber optic sensor with double resonance dips. Sens. Actuator B 188, 326–333 (2013)CrossRefGoogle Scholar
  19. Shukla, S., Sharma, N.K., Sajal, V.: Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study. Sens. Actuator B 206, 463–470 (2015)CrossRefGoogle Scholar
  20. Singh, S., Gupta, B.D.: Simulation of a surface plasmon resonance based fiber optic sensor for gas sensing in visible range using films of nanocomposites. Meas. Sci. Technol. 21, 115202 (2010)Google Scholar
  21. Srivastava, S.K., Gupta, B.D.: Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor. Sens. Actuator B 156, 559–562 (2011)CrossRefGoogle Scholar
  22. Srivastava, S.K., Arora, V., Sapra, S., Gupta, B.D.: Localized surface plasmon resonance based fiber optic U-shaped biosensor for the detection of blood glucose. Plasmonics 7, 261–268 (2012)CrossRefGoogle Scholar
  23. Yang, D., Lu, H., Chen, B., Lin, C.: Surface plasmon resonance of SnO2/Au bi-layer films for gas sensing applications. Sens. Actuator B 145, 832–838 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations