Bright screening solitons in a photorefractive waveguide

  • Aavishkar Katti


Characteristics of propagation of bright screening solitons are studied in a photorefractive waveguide. The investigation is performed under paraxial wave approximation and Wentzel–Kramers–Brillouin–Jefferys approximation. A Gaussian ansatz for the soliton shape is used instead of the numerical solutions. The planar waveguide structure intensifies the self-focussing while decreasing the minimum or threshold power required for self trapping. The waveguide structure embedded in the crystal can self trap a soliton of power lower than the threshold power. As the waveguide parameter increases, minimum required power to self trap the beam decreases. The existence of bistable states is also predicted. Four regimes of power are identified in which the solitons behaviour is studied. Propagation of screening solitons in a photorefractive waveguide is studied in the absence of the photovoltaic and pyroelectric effect for the first time.


Photorefractive effect Optical spatial solitons Planar waveguide 


  1. Akhmanov, S.A., Sukhoruk, A.P., Khokhlov, R.V.: Self-focusing and difraction of light beams in a nonlinear medium. Sov. Phys. Uspekhi USSR 10(5), 609–636 (1968)CrossRefADSGoogle Scholar
  2. Akhouri, B.P., Gupta, P.K.: Waveguiding effect on optical spatial solitons in centrosymmetric photorefractive materials. J. Opt. 46(3), 281–286 (2017). CrossRefGoogle Scholar
  3. Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27(6), 3135–3145 (1983). CrossRefADSGoogle Scholar
  4. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75(8), 086401 (2012). CrossRefADSGoogle Scholar
  5. Christodoulides, D.N., Carvalho, M.I.: Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12(9), 1628–1633 (1995). CrossRefADSGoogle Scholar
  6. Doran, N.J., Wood, D.: Soliton processing element for all-optical switching and logic. J. Opt. Soc. Am. B 4(11), 1843–1846 (1987). CrossRefADSGoogle Scholar
  7. Duree, G.C., Shultz, J.L., Salamo, G.J., Segev, M., Yariv, A., Crosignani, B., Di Porto, P., Sharp, E.J., Neurgaonkar, R.R.: Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71(4), 533–536 (1993). CrossRefADSGoogle Scholar
  8. Katti, A.: Bright pyroelectric quasi-solitons in a photorefractive waveguide. Opt. Int. J. Light Electron Opt. 156, 433–438 (2018). CrossRefGoogle Scholar
  9. Katti, Aavishkar, Yadav, R.A.: Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect. Phys. Lett. Sect. A General At. Solid State Phys. 381(3), 166–170 (2017). MathSciNetGoogle Scholar
  10. Katti, A., Yadav, R.A., Prasad, A.: Bright optical spatial solitons in photorefractive waveguides having both the linear and quadratic electro-optic effect. Wave Motion 77, 64–76 (2018). MathSciNetCrossRefGoogle Scholar
  11. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)Google Scholar
  12. Królikowski, W., Kivshar, Y.S.: Soliton-based optical switching in waveguide arrays. J. Opt. Soc. Am. B 13(5), 876–887 (1996). CrossRefADSGoogle Scholar
  13. Liu, J.S., Lu, K.Q.: Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection. J. Opt. Soc. Am. B: Opt. Phys. 16(4), 550–555 (1999)CrossRefGoogle Scholar
  14. Peccianti, M., Conti, C., A, Gaetano, De Luca, A., Umeton, C.: All-optical switching and logic gating with spatial solitons in liquid crystals. Appl. Phys. Lett. 81(18), 3335–3337 (2002). CrossRefADSGoogle Scholar
  15. Peccianti, M., Conti, C., Assanto, G., De Luca, A., Umeton, C.: Routing of anisotropic spatial solitons and modulational instability in liquid crystals. Earth Moon Planets 432, 733–738 (2004). Google Scholar
  16. Petter, J., Denz, C.: Guiding and dividing waves with photorefractive solitons. Opt. Commun. 188(1–4), 55–61 (2001). CrossRefADSGoogle Scholar
  17. Popescu, S.T., Petris, A., Vlad, V.I.: Recording of self-induced waveguides in lithium niobate at 405 Nm wavelength by photorefractive–pyroelectric effect. J. Appl. Phys. 113(21), 213110 (2013). CrossRefADSGoogle Scholar
  18. Safioui, J., Devaux, F., Chauvet, M.: Pyroliton: pyroelectric spatial soliton. Opt. Express 17(24), 22209–22216 (2009). CrossRefADSGoogle Scholar
  19. Safioui, J., Fazio, E., Devaux, F., Chauvet, M.: Surface-wave pyroelectric photorefractive solitons. Opt. Lett. 35(8), 1254–1256 (2010). CrossRefADSGoogle Scholar
  20. Segev, M., Agranat., A.J.: Spatial solitons in centrosymmetric photorefractive media. Opt. Lett. 22(17), 1299–1301 (1997). CrossRefADSGoogle Scholar
  21. Segev, M., Crosignani, B., Yariv, A., Fischer, B.: Spatial solitons in photorefractive media. Phys. Rev. Lett. 68(7), 923–926 (1992). CrossRefADSGoogle Scholar
  22. Shwetanshumala, S., Konar, S.: Bright optical spatial solitons in a photorefractive waveguide. Phys. Scr. 82(4), 045404 (2010). CrossRefzbMATHGoogle Scholar
  23. Soto-Crespo, J.M., Wright, E.M.: All-optical switching of solitons in two- and three-core nonlinear fiber couplers. J. Appl. Phys. 70(12), 7240–7243 (1991). CrossRefADSGoogle Scholar
  24. Stegeman, G.I.: Optical spatial solitons and their interactions: universality and diversity. Science 286(5444), 1518–1523 (1999). CrossRefGoogle Scholar
  25. Su, Y., Jiang, Q., Ji, X.: Photorefractive spatial solitons supported by pyroelectric effects in strontium barium niobate crystals. Optik 126(18), 1621–1624 (2015). CrossRefADSGoogle Scholar
  26. Valley, G.C., Segev, M., Crosignani, B., Yariv, A., Fejer, M.M., Bashaw, M.C.: Dark and bright photovoltaic spatial solitons. Phys. Rev. A 50(6), R4457–R4460 (1994). CrossRefADSGoogle Scholar
  27. Vlasov, S.N., Petrishchev, V.A., Talanov, V.I.: Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14(9), 1062–1070 (1971). CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBanasthali VidyapithNewai(Tonk)India

Personalised recommendations