Skip to main content
Log in

Early skin cancer detection sensor based on photonic band gap and graphene load at terahertz regime

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Microwave, THz, and optical systems have been developed rapidly for biological detection and imaging in various applications such as skin cancer detection. In this paper, we have suggested special THz sensor based on split ring resonator to making a hot spot for electric field enhancement. In addition, we have utilized photonic band gap (PBG) structure to increase the electric field in the hot spot and we have revealed that this technique lead to enhance the maxima of the electric field more than 12% at the hot spot and the reflection coefficient (S21) value from − 22 to − 35 dB. In other words, we have tried to detect the cancer tissue based on reflection method and related frequency shift. Therefore, the sensor is studied in the existance and absence of the sample where the frequency shift is noticed as a detection factor. At last, the graphene loads are added to the structure and the maxima of the electric field are increased up to 25.3% for 1.96 THz at the hot spot in contrast to basic structure with the reconfigurable characteristic. The parametric studies are noticed to realizing the distortion effect on resonances and electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afroozeh, A., Innate, K., Ali, J., Yupapin, P.P.: THz frequency generation using Gaussian pulse for medical applications. Optik Int. J. Light Electron Opt. 124(5), 416–419 (2013)

    Article  Google Scholar 

  • Arezoomand, A.S., Zarrabi, F.B., Heydari, S., Gandji, N.P.: Independent polarization and multi-band THz absorber base on Jerusalem cross. Opt. Commun. 352, 121–126 (2015)

    Article  ADS  Google Scholar 

  • Catapano, I, Soldovieri, F.: A data processing chain for terahertz imaging and its use in artwork diagnostics. J. Infrared Millim. Terahertz Waves 38(4), 518–530 (2017)

    Article  Google Scholar 

  • Choi, Y., Choi, J.-W., Cioffi, J.M.: A geometric-statistic channel model for THz indoor communications. J Infrared MillimTerahertz Waves 34(7–8), 456–467 (2013)

    Article  Google Scholar 

  • Destic, F., Bouvet, C.: Impact damages detection on composite materials by THz imaging. Case Stud. Nondestruct. Test. Eval. 6, 53–62 (2016)

    Article  Google Scholar 

  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., Abbott, D.: High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 14(5), 1345–1351 (2014)

    Article  ADS  Google Scholar 

  • Férachou, D., Humbert, G., Le Floch, J.-M., Aubourg, M., Auguste, J.-L., Tobar, M.E., Cros, D., Blondy, J.-M.: Compact hollow-core photonic band gap resonator with optimised metallic cavity at microwave frequencies. Electron. Lett. 47(14), 805–807 (2011)

    Article  Google Scholar 

  • Garcia-Banos, B., Cuesta-Soto, F., Griol, A., Catala-Civera, J.M., Pitarch, J.: Enhancement of sensitivity of microwave planar sensors with EBG structures. IEEE Sens. J. 6(6), 1518–1522 (2006)

    Article  ADS  Google Scholar 

  • Jafari, F.S., Ahmadi-Shokouh, J.: Industrial liquid characterization enhancement using microwave sensor equipped with electronic band gap structure. AEU Int. J. Electron. Commun. 82, 152–159 (2017)

    Article  Google Scholar 

  • Jafari, F.S., Ahmadi-Shokouh, J.: Frequency-selective surface to determine permittivity of industrial oil and effect of nanoparticle addition in x-band. J. Electron. Mater. 47(2), 1397–1404 (2018)

    Article  ADS  Google Scholar 

  • Jamilan, S., Semouchkin, G., Gandji, N.P., Semouchkina E.: Spatial dispersion of index components required for building invisibility cloak medium from photonic crystals. J. Opt (2018)

  • Meyne, N., Cammin, C., Jacob, A. F.: Accuracy enhancement of a split-ring resonator liquid sensor using dielectric resonator coupling. In: 2014 20th International Conference on Microwaves, Radar, and Wireless Communication (MIKON), pp. 1–4. IEEE (2014)

  • Nguyen, T.K., Thi, A.H., Han, H., Park, I.: Numerical study of self-complementary antenna characteristics on substrate lenses at terahertz frequency. J. Infrared Millim. Terahertz Waves 33(11), 1123–1137 (2012)

    Article  Google Scholar 

  • Pickwell, E., Cole, B.E., Fitzgerald, A.J., Wallace, V.P., Pepper, M.: Simulation of terahertz pulse propagation in biological systems. Appl. Phys. Lett. 84(12), 2190–2192 (2004)

    Article  ADS  Google Scholar 

  • Radoi, A., Dragoman, M., Dragoman, D.: Plasmonic ambient light sensing with MoS 2-graphene heterostructures. Physica E 85, 164–168 (2017)

    Article  ADS  Google Scholar 

  • Rahman, A., Rahman, A.K., Rao, B.: Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 82, 64–70 (2016)

    Article  Google Scholar 

  • Sadeghzadeh, R.A., Zarrabi, F.B.: Metamaterial Fabry–Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna. Optik Int. J. Light Electron Opt. 127(13), 5181–5185 (2016)

    Article  Google Scholar 

  • Savo, S., Shrekenhamer, D., Padilla, W.J.: Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2(3), 275–279 (2014)

    Article  Google Scholar 

  • Seddon, A.B.: Mid-infrared (IR)—a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Physica Status Solidi (b) 250(5), 1020–1027 (2013)

    Article  ADS  Google Scholar 

  • Semouchkina, E., Duan, R., Gandji, N.P., Jamilan, S., Semouchkin, G., Pandey, R.: Superluminal media formed by photonic crystals for transformation optics-based invisibility cloaks. J. Opt. 18(4), 044007 (2016)

    Article  ADS  Google Scholar 

  • Seyedsharbaty, M.M., Sadeghzadeh, R.A.: Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt. Quant. Electron. 49(6), 221 (2017)

    Article  Google Scholar 

  • Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  ADS  Google Scholar 

  • Wallace, V.P., Fitzgerald, A.J., Pickwell, E., Pye, R.J., Taday, P.F., Flanagan, N., Ha, T.: Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl. Spectrosc. 60(10), 1127–1133 (2006)

    Article  ADS  Google Scholar 

  • Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47(21), 3853 (2002)

    Article  Google Scholar 

  • Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., Luo, Y.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)

    Article  Google Scholar 

  • Yin, X.-X., Zhang, Y., Cao, J., Wu, J.-L., Hadjiloucas, S.: Exploring the complementarity of THz pulse imaging and DCE-MRIs: toward a unified multi-channel classification and a deep learning framework. Comput. Methods Programs Biomed. 137, 87–114 (2016)

    Article  Google Scholar 

  • Yu, C., Fan, S., Sun, Y., Pickwell-MacPherson, E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2(1), 33–45 (2012)

    Google Scholar 

  • Zarifi, M.H., Rahimi, M., Daneshmand, M., Thundat, T.: Microwave ring resonator-based non-contact interface sensor for oil sands applications. Sens. Actuators B Chem. 224, 632–639 (2016)

    Article  Google Scholar 

  • Zarrabi, F.B., Naser-Moghadasi, M., Heydari, S., Maleki, M., Arezomand, A.S.: Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt. Commun. 371, 34–39 (2016)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Seyedsharbaty, M.M., Ahmed, Z., Arezoomand, A.S., Heydari, S.: Wide band yagi antenna for terahertz application with graphene control. Optik Int. J. Light Electron Opt. 140, 866–872 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdows B. Zarrabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, S., Nouri-Novin, S., Seyedsharbaty, M.M. et al. Early skin cancer detection sensor based on photonic band gap and graphene load at terahertz regime. Opt Quant Electron 50, 230 (2018). https://doi.org/10.1007/s11082-018-1496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1496-y

Keywords

Navigation