Advertisement

Design and optimization of thin film polarizer at the wavelength of 1540 nm using differential evolution algorithm

  • Mahdi Ebrahimi
  • Mohsen Ghasemi
Article
  • 56 Downloads

Abstract

In this paper, a thin film polarizer at the wavelength of 1540 nm in infrared region was designed and optimized using differential evolution method. It is shown how the algorithm’s parameters can change the output result to obtain the best consequence of optimization. This polarizer consists of a few pairs of high and low refractive index dielectric materials, titanium dioxide and silicon dioxide, respectively, with \(BK_{7}\) glass substrate and the angle of incident light was supposed 56° that is the Brewster angle for \(BK_{7}\) glass. Our final optimized polarizer has 91.20 and 0.336% transmittance for P and S polarization, respectively, and a 271 ratio of \(\frac{{T_{P} }}{{T_{S} }}\) which has high significance for this polarizer. It consists of eight pairs of layers with low and high refractive index materials and 3369.1 nm physical thickness which is used to separate S and P polarized light for Q-switching process.

Keywords

Polarizer Optimization Differential evolution Dielectric materials Infrared region Brewster angle 

References

  1. Abed, A.N., Gaffar, A., Rashid, H.G., Gahdban, A.Q.: Modeling and optimum design band pass filter for mid IR region. J. Baghdad Sci. 11, 1459–1466 (2014)Google Scholar
  2. Back, T., Schutz, M.: Evolution strategies for mix-integer optimization of optical multilayer systems. In: Fogel, D.B., Atmar, W. (eds.) Proceeding 4th annual conference Evolutionary Programming, pp. 33–51. San Diago, CA (1995)Google Scholar
  3. Baedi, J., Arabshahi, H., Gordi Armaki, M., Hosseini, E.: Optical design of multilayer filter by using PSO algorithm. Res. J. Appl. Sci. Eng. Technol. 2, 56–59 (2010)Google Scholar
  4. Dobrowolski, J.A.: Optical properties of films and coatings. In: Bass, M. (ed.) Handbook of Optics, 2nd edn, pp. 2824–2831. McGraw-Hill, New York (1995)Google Scholar
  5. Dobrowolski, J.A., Waldorf, A.: High-performance thin film polarizer for the UV and visible spectral regions. Appl. Opt. 20, 111–116 (1981)ADSCrossRefGoogle Scholar
  6. Gavrilov, N.I., Pashinin, P.P., Prokhorov, A.M., Prilyuk, O.M., Sergeev, S.N., Serov, R.V., Furman, S.A., Yanovskii, V.P., Vvedenskii, V.D.: High-optical-strength thin-film interference polarizers for high-power lasers. Sov. J. Quantum Electron. 13, 1272–1273 (1983)ADSCrossRefGoogle Scholar
  7. Greiner, H.: Robust optical coating design with evolutionary strategies. Appl. Opt. 35, 5477–5482 (1996)ADSCrossRefGoogle Scholar
  8. Kaiser, N., Pulker, H.K.: Optical Interference Coatings. Springer, Berlin (2003)CrossRefGoogle Scholar
  9. Lie, L., Dobrowolski, J.A.: Computation speeds of different optical thin films synthesis methods. Appl. Opt. 31, 3790–3799 (1992)ADSCrossRefGoogle Scholar
  10. Macleod, H.A.: Thin Film Optical Filters, 4th edn. CRC Press, NewYork (2010)Google Scholar
  11. Perla, S.R., Azzam, R.M.A.: Wide-angle, high-extinction-ratio, infrared polarizing beam splitters using frustrated total internal reflection by an embedded centrosymmetric multilayer. Appl. Opt. 46, 4604–4612 (2007)ADSCrossRefGoogle Scholar
  12. Sahraee, M., Fallah, H.R., Moradi, B., Zabolian, H., Haji Mahmoodzade, M.: Design and fabrication of thin-film polarizer at wavelength of 1540 nm and investigation of its laser-induced damage threshold. Eur. Phys. J. Plus 129, 277–288 (2014)CrossRefGoogle Scholar
  13. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Thelen, A.: Design of Optical Interference Coatings. McGraw-Hill, New York (1989)Google Scholar
  15. Tikhonravov, A.V.: Some theoretical aspects of thin film optics and their applications. Appl. Opt. 32, 5417–5426 (1993)ADSCrossRefGoogle Scholar
  16. Tikhonravov, A.V., Trubetskov, M.K.: Modern design tools and a new paradigm in optical coating design. Appl. Opt. 51, 7319–7332 (2012)ADSCrossRefGoogle Scholar
  17. Tilma, B.W., Jiao, Y., van Veldhoven, P.J., Smalbrugge, B., Ambrosius, H.P.M.M., Thijs, P.T., Leijtens, X.J.M., Nötzel, R., Smit, M.K., Bente, E.A.J.M.: InP-based monolithically integrated tunable wavelength filters in the 1.6–1.8 μm wavelength region for tunable laser purposes. J. Lightwave Technol. 29, 2818–2830 (2011)ADSCrossRefGoogle Scholar
  18. Willy, R.: Practical Design and Production of Optical Thin Films, 2nd edn. Dekker Inc., New York (2002)CrossRefGoogle Scholar
  19. Willey, R.: Practical Design of Optical Thin Films, 4th edn. Willey, Charlevoix (2014)Google Scholar
  20. Yang, J.M., Kao, C.Y.: Efficient evolutionary algorithm for the thin-film synthesis of inhomogeneous optical coatings. Appl. Opt. 40, 3256–3267 (2001a)ADSCrossRefGoogle Scholar
  21. Yang, J.M., Kao, C.Y.: An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incinence. J. Lightwave Technol. 19, 559–570 (2001b)ADSCrossRefGoogle Scholar
  22. Yang, J., Wang, L., Wu, X., Cheng, T., Jiang, H.: High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues. Opt. Express 22, 15686–15696 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPayame Noor UniversityTehranIran
  2. 2.Department of Physics, Faculty of SciencesShahrekord UniversityShahrekordIran
  3. 3.Nanotechnology Research CenterShahrekord UniversityShahrekordIran

Personalised recommendations