Demonstration of tunable complex refractive index of graphene covered one dimensional photonic crystals

  • S. M. Hamidi
  • M. Mahboubi
  • S. M. Mohseni
  • B. Azizi
  • A. Ghaderi
  • S. Javadi
Article
  • 33 Downloads

Abstract

Here, we report tunable complex optical properties of one dimensional photonic crystal covered by graphene layer, as a new optical material, in the visible spectral range. For this purpose, we fabricate two different structure as one dimensional photonic crystal, with photonic band gap which centered at 650 nm, by electron gun deposition method and the chemical vapor deposition has been used to synthesize graphene top layer. To demonstrate the optical properties of our two photonic crystals affected by graphene layer, we use the reflectance spectra of the samples as a function of incidence angle. Because the sufficient sensitivity of the refractive indices of the samples, we extract the real and imaginary part of these parameters in all of visible region as a tunable complex refractive index. Our results show that we have sufficient change due to excited plasmons in graphene layer by Bloch wave of photonic crystal which is very useful for sensor applications.

Keywords

One-dimensional photonic crystal Graphene layer Magneto-plasmon Bloch waves 

Notes

Acknowledgements

The authors thank central laboratory of Shahid Beheshti University for help in scanning electron microscopy measurement.

References

  1. Berman, O.L., Gumbs, G., Lozovik, Y.E.: Magnetoplasmons in layered graphene structures. Phys. Rev. B 78(8), 085401 (2008).  https://doi.org/10.1103/PhysRevB.78.085401 ADSCrossRefGoogle Scholar
  2. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)ADSCrossRefGoogle Scholar
  3. Bychkov, Y.A., Martinez, G.: Magnetoplasmon excitations in graphene for filling factors ν ≤ 6. Phys. Rev. B 77(12), 125417 (2008).  https://doi.org/10.1103/PhysRevB.77.125417 ADSCrossRefGoogle Scholar
  4. Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F., Javier García de Abajo, F.: Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1), 431–440 (2011)CrossRefGoogle Scholar
  5. Fang, Z., Wang, Y., Liu, Z., Schlather, A., Ajayan, P.M., Koppens, F.H.L., Nordlander, P., Halas, N.J.: Plasmon-induced doping of graphene. ACS Nano 6(11), 10222–10228 (2012)CrossRefGoogle Scholar
  6. Ferreira, A., Peres, N.M.R., Neto, A.H.C.: Confined magneto-optical waves in graphene. Phys. Rev. B 85(20), 205426 (2012)ADSCrossRefGoogle Scholar
  7. Fujikawa, R., Tanizaki, K., Baryshev, A.V., Lima, P., Shina, K., Uchida, H., Inoue, M.: Magnetic field sensors using magnetophotonic crystals. In: Proc. SPIE, vol. 6369, 63690G (2006)Google Scholar
  8. Gao, W., Shu, J., Qiu, C., Xu, Q.: Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9), 7806–7813 (2012)CrossRefGoogle Scholar
  9. Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Ponomarenko, L.A., Geim, A.K., Novoselov, K.S., Mishchenko, A.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2013)ADSCrossRefGoogle Scholar
  10. Grigorenko, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012)ADSCrossRefGoogle Scholar
  11. Hage, F.S., Hardcastle, T.P., Gjerding, M.N., Kepaptsoglou, D.M., Seabourne, C.R., Winther, K.T., Zan, R., Amani, J.A., Hofsaess, H.C., Bangert, U., Thygesen, K.S., Ramasse, Q.M.: Local plasmon engineering in doped graphene. ACS Nano 12, 1837–1848 (2018)CrossRefGoogle Scholar
  12. Hamidi, S. M., Gachilo, T., Bananej, A.: Glucose sensing using Tamm plasmon-exciton in one-dimensional photonic crystal structure. Under review in Appl. Phys. B. (2017)Google Scholar
  13. Inoue, M., Baryshev, A., Takagi, H., Lim, P.B., Hatafuku, K., Noda, J., Togo, K.: Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature. Appl. Phys. Lett. 98(13), 132511 (2011).  https://doi.org/10.1063/1.3567940 Google Scholar
  14. Li, J., Jia, B., Bullen, C., Serbin, J., Zhou, G., Gu, M.: Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications. Adv. Mater. 19(20), 3276–3280 (2007)CrossRefGoogle Scholar
  15. Mikhailova, T.V., Berzhansky, V.N., Karavainikov, A.V., Shaposhnikov, A.N., Prokopov, A.R., Lyashko, S.D.: One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry. J. Phys. Conf. Ser. 741(1) (2016).  https://doi.org/10.1088/1742-6596/741/1/012121
  16. Mosallaei, H., Sarabandi, K.: Magneto-dielectrics in electromagnetics: concept and applications. IEEE Trans. Antennas Propag. 52(6), 1558–1567 (2004)ADSCrossRefGoogle Scholar
  17. Nikitin, A.Y., Alonso-González, P., Hillenbrand, R.: Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials. Nano Lett. 14(5), 2896–2901 (2014)ADSCrossRefGoogle Scholar
  18. Park, Y., Drouard, E., Daif, E., Letartre, X., Viktorovitch, P., Fave, A., Kaminski, A., Lemiti, M., Seassal, C.: Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express 17(16), 14312–14321 (2009)ADSCrossRefGoogle Scholar
  19. Ponraj, J.S., Xu, Z.-Q., Dhanabalan, S.C., Mu, H., Wang, Y., Yuan, J., Li, P., Thakur, S., Ashrafi, M., Mccoubrey, K., Zhang, Y., Li, S., Zhang, H., Bao, Q.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27(46), 462001 (2016).  https://doi.org/10.1088/0957-4484/27/46/462001 CrossRefGoogle Scholar
  20. Pospischil, A., Furchi, M.M., Mueller, T.: Solar-energy conversion and light emission in an atomic monolayer pn diode. Nat. Nanotechnol. 9(4), 257–261 (2014)ADSCrossRefGoogle Scholar
  21. Schneider, G.J., Watson, G.H.: Nonlinear optical spectroscopy in one-dimensional photonic crystals. Appl. Phys. Lett. 83(26), 5350–5352 (2003)ADSCrossRefGoogle Scholar
  22. Sensale-Rodriguez, B., Yan, R., Kelly, M., Fang, T., Tahy, K., Hwang, W., Jena, D., Liu, L., Xing, H.: Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012).  https://doi.org/10.1038/ncomms1787 ADSCrossRefGoogle Scholar
  23. Tanabe, T., Nishiguchi, K., Kuramochi, E., Notomi, M.: Low power and fast electro-optic silicon modulator with lateral pin embedded photonic crystal nanocavity. Opt. Express 17(25), 22505–22513 (2009)ADSCrossRefGoogle Scholar
  24. Tassin, P., Koschny, T., Kafesaki, M., Soukoulis, C. M.: A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photon. 6(4), 259–264 (2012)ADSCrossRefGoogle Scholar
  25. Tittl, A., Mai, P., Taubert, R., Dregely, R., Liu, N., Giessen, H.: Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett. 11(10), 4366–4369 (2011)ADSCrossRefGoogle Scholar
  26. Tymchenko, M., Nikitin, A.Y., Martín-Moreno, L.: Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. ACS Nano 7(11), 9780–9787 (2013)CrossRefGoogle Scholar
  27. Vasiliev, M., Kotov, V.A., Alameh, K.E., Belotelov, V.I., Zvezdin, A.K.: Novel magnetic photonic crystal structures for magnetic field sensors and visualizers. IEEE Trans. Magn. 44(3), 323–328 (2008)ADSCrossRefGoogle Scholar
  28. Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014)ADSCrossRefGoogle Scholar
  29. Xiang, Y., Dai, X., Guo, J., Zhang, H., Wen, S., Tang, D.: Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014).  https://doi.org/10.1038/srep05483 ADSCrossRefGoogle Scholar
  30. Xiao, S., Zhu, X., Li, B.-H., Mortensen, N.A.: Graphene-plasmon polaritons: from fundamental properties to potential applications. Front. Phys. 11(2), 117801 (2016).  https://doi.org/10.1007/s11467-016-0551-z CrossRefGoogle Scholar
  31. Yan, H., et al.: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7(5), 330–334 (2012)ADSCrossRefGoogle Scholar
  32. Zhang, H., Virally, S., Bao, Q., Ping, L.K., Massar, S., Godbout, N., Kockaert, P.: Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37(11), 1856–1858 (2012)ADSCrossRefGoogle Scholar
  33. Zheng, Z., Zhao, C., Lu, S., Chen, Y., Li, Y., Zhang, H., Wen, S.: Microwave and optical saturable absorption in graphene. Opt. Express 20(21), 23201–23214 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Hamidi
    • 1
  • M. Mahboubi
    • 1
  • S. M. Mohseni
    • 2
  • B. Azizi
    • 2
  • A. Ghaderi
    • 2
  • S. Javadi
    • 1
  1. 1.Magneto-plasmonic Lab, Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Physics DepartmentShahid Beheshti UniversityTehranIran

Personalised recommendations