The nano loop antenna with Fano resonance and symmetrical formation and reconfigurable characteristic for bio-sensing application

  • Mohammad Vahedian
  • Mohammad Naser-Moghadasi


The nanoantenna with Fano response is important for solar cell and bio-sensing application because of the more electric field enhancement. In this paper, we have presented a new structure based on two parallel nano loops and for achieving the Fano response; we have combined this structure with nano-sphere arrays which make a coupling between two nano loops. The Interaction between these nanoparticles is made bright and dark mode and Fano responses. To improve the electric field in this structure, we have implemented a multi-layer graphene under the nanoparticle. We show that by altering the chemical potential from 0.2 to 0.8 eV the maximum electric field has increased more than 20% for 0.6 eV in comparison to the case for 0.2 eV. We have studied the parameters effect on resonances. In addition, the presented antenna is used for biomaterial and we have compared the bare and coated structures which can consider as a figure of merit factor for optical sensing and imaging. Here, we have utilized the graphene layer with the thickness of 2 nm under the nanoparticle as multi-layer graphene. The structure is simulated based on the FIT method by the CST and for the substrate, we are selected SiO2 with the thickness of 80 nm which is a normal substrate for graphene deposition and the Palik mode is considered for gold parts. As a result of the fact, the graphene can be considered for controlling the electric field and the optical nanoantenna for bio-sensing.


Plasmonic Fano Graphene Distortion Nanoantenna Bio-sensing 


  1. Ahmadivand, A., Pala, N.: Multiple coil-type Fano resonances in all-dielectric antisymmetric quadrumers. Opt. Quantum Electron. 47(7), 2055–2064 (2015a)CrossRefGoogle Scholar
  2. Ahmadivand, A., Pala, N.: Tailoring the negative-refractive-index metamaterials composed of semiconductor–metal–semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum. JOSA A 32(2), 204–212 (2015b)ADSCrossRefGoogle Scholar
  3. Ahmadivand, A., Golmohammadi, S., Karabiyik, M., Pala, N.: Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing. IEEE Sens. J 15(3), 1588–1594 (2015a)CrossRefGoogle Scholar
  4. Ahmadivand, A., Sinha, R., Pala, N.: Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna. Opt. Commun. 355, 103–108 (2015b)ADSCrossRefGoogle Scholar
  5. Alonso-Gonzalez, P., Schnell, M., Sarriugarte, P., Sobhani, H., Wu, C., Arju, N., Khanikaev, A., et al.: Real-space mapping of Fano interference in plasmonic metamolecules. Nano Lett. 11(9), 3922–3926 (2011)ADSCrossRefGoogle Scholar
  6. Barnard, E.S., White, J.S., Chandran, A., Brongersma, M.L.: Spectral properties of plasmonic resonator antennas. Opt. Express 16(21), 16529–16537 (2008)ADSCrossRefGoogle Scholar
  7. Bavir, M., Fattah, A.: An investigation and simulation of the graphene performance in dye-sensitized solar cell. Opt. Quantum Electron. 48(12), 559 (2016)CrossRefGoogle Scholar
  8. Cala’Lesina, A., Ramunno, L., Berini, P.: Dual-polarization plasmonic metasurface for nonlinear optics. Opt. Lett. 40(12), 2874–2877 (2015)ADSCrossRefGoogle Scholar
  9. Cetin, A.E., Altug, H.: Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11), 9989–9995 (2012)CrossRefGoogle Scholar
  10. Cetin, A.E., Turkmen, M., Aksu, S., Etezadi, D., Altug, H.: Multi-resonant compact nanoaperture with accessible large nearfields. Appl. Phys. B 118(1), 29–38 (2015)ADSCrossRefGoogle Scholar
  11. Cox, J.D., Garcia de Abajo, F.J.: Plasmon-enhanced nonlinear wave mixing in nanostructured graphene. ACS Photonics 2(2), 306–312 (2015)CrossRefGoogle Scholar
  12. Dragoman, M., Dragoman, D.: Plasmonics: applications to nanoscale terahertz and optical devices. Prog. Quantum Electron. 32(1), 1–41 (2008)ADSCrossRefGoogle Scholar
  13. Hadadi, T., Naser-Moghadasi, M., Arezoomand, A.S., Zarrabi, F.B.: Sub wavelength plasmonic nano-antenna with modified ring structure for multi resonance application and circular polarization. Opt. Quantum Electron. 48(2), 79 (2016)CrossRefGoogle Scholar
  14. Hopkins, B., Filonov, D.S., Miroshnichenko, A.E., Monticone, F., Alù, A., Kivshar, Y.S.: Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances. ACS Photonics 2(6), 724–729 (2015)CrossRefGoogle Scholar
  15. Hosseinbeig, A., Pirooj, A., Zarrabi, F.B.: A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator. J. Magn. Magn. Mater. 423, 203–207 (2017)ADSCrossRefGoogle Scholar
  16. Jahangiri, P., Zarrabi, F.B., Naser-Moghadasi, M., Arezoomand, A.S., Heydari, S.: Hollow plasmonic high Q-factor absorber for bio-sensing in mid-infrared application. Opt. Commun. 394, 80–85 (2017)ADSCrossRefGoogle Scholar
  17. Lim, W.X., Han, S., Gupta, M., MacDonald, K.F., Singh, R.: Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions. Appl. Phys. Lett. 111(6), 061104 (2017)ADSCrossRefGoogle Scholar
  18. Liu, S.-D., Leong, E.S.P., Li, G.-C., Hou, Y., Deng, J., Teng, J.H., Ong, H.C., Lei, D.Y.: Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano 10(1), 1442–1453 (2016)CrossRefGoogle Scholar
  19. Mcleod, A., Vernon, K.C., Rider, A.E., Ostrikov, K.: Optical coupling of gold nanoparticles on vertical graphenes to maximize SERS response. Opt. Lett. 39(8), 2334–2337 (2014)ADSCrossRefGoogle Scholar
  20. Mutlu, M., Akosman, A.E., Serebryannikov, A.E., Ozbay, E.: Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Opt. Lett. 36(9), 1653–1655 (2011)ADSCrossRefGoogle Scholar
  21. Naser-Moghadasi, M., Zarrabi, F.B., Pandesh, S., Rajabloo, H., Bazgir, M.: Optical FANO resonance with polarization independence with novel nano-antenna. Opt. Quant. Electron. 48(4), 266 (2016)CrossRefGoogle Scholar
  22. Nooshnab, V., Golmohammadi, S.: Revealing the effect of plasmon transmutation on charge transfer plasmons in substrate-mediated metallodielectric aluminum clusters. Opt. Commun. 382, 354–360 (2017)ADSCrossRefGoogle Scholar
  23. Oubre, C., Nordlander, P.: Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 108(46), 17740–17747 (2004)CrossRefGoogle Scholar
  24. Parvin, A., Laleabadi, H., Zarrabi, F.B.: Perpendicular bowtie and graphene load with Fano resonance for mid infrared application. Opt. Quant. Electron. 49(1), 24 (2017)CrossRefGoogle Scholar
  25. Polman, A.: Plasmonics applied. Science 322(5903), 868–869 (2008)CrossRefGoogle Scholar
  26. Riazimehr, S., Kataria, S., Bornemann, R., Haring-Bolivar, P., Ruiz, F.J.G., Engström, O., Godoy, A., Lemme, M.C.: High photocurrent in gated graphene–silicon hybrid photodiodes. ACS Photonics 4, 1506–1514 (2017)CrossRefGoogle Scholar
  27. Schedin, F., Lidorikis, E., Lombardo, A., Kravets, V.G., Geim, A.K., Grigorenko, A.N., Novoselov, K.S., Ferrari, A.C.: Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4(10), 5617–5626 (2010)CrossRefGoogle Scholar
  28. Seyedsharbaty, M.M., Sadeghzadeh, R.A.: Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt. Quantum Electron. 49(6), 221 (2017)CrossRefGoogle Scholar
  29. Srivastava, Y.K., Singh, R.: Impact of conductivity on Lorentzian and Fano resonant high-Q THz metamaterials: superconductor, metal and perfect electric conductor. J. Appl. Phys. 122(18), 183104 (2017)ADSCrossRefGoogle Scholar
  30. Srivastava, Y.K., Cong, L., Singh, R.: Dual-surface flexible THz Fano metasensor. Appl. Phys. Lett. 111(20), 201101 (2017)ADSCrossRefGoogle Scholar
  31. Trügler, A., Tinguely, J.C., Jakopic, G., Hohenester, U., Krenn, J.R., Hohenau, A.: Near-field and SERS enhancement from rough plasmonic nanoparticles. Phys. Rev. B 89(16), 165409 (2014)ADSCrossRefGoogle Scholar
  32. Weber, W.H., Ford, G.W.: Propagation of optical excitations by dipolar interactions in metal nanoparticle chains. Phys. Rev. B 70(12), 125429 (2004)ADSCrossRefGoogle Scholar
  33. Wegener, M., García-Pomar, J.L., Soukoulis, C.M., Meinzer, N., Ruther, M., Linden, S.: Toy model for plasmonic metamaterial resonances coupled to two-level system gain. Opt. Express 16(24), 19785–19798 (2008)ADSCrossRefGoogle Scholar
  34. Zarrabi, F.B., Moghadasi, M.N.: Investigated the Fano resonance in the nano ring arrangement. Opt.-Int. J. Light Electron Opt. 138, 80–86 (2017)CrossRefGoogle Scholar
  35. Zarrabi, F.B., Naser-Moghadasi, M.: Plasmonic split ring resonator with energy enhancement for the application of bio-sensing and energy harvesting based on the second harmonic generation and multi Fano resonance. J. Alloys Compd. 706, 568–575 (2017)CrossRefGoogle Scholar
  36. Zarrabi, F.B., Mansouri, Z., Ahmadian, R., Kuhestani, H., Rahimi, M.: Nanoscale plasmonic antenna difference formation implementation effect on field enhancement. Opt.-Int. J. Light Electron Opt. 126(22), 3424–3428 (2015)CrossRefGoogle Scholar
  37. Zarrabi, F.B., Mohaghegh, M., Bazgir, M., Arezoomand, A.S.: Graphene-Gold Nano-ring antenna for Dual-resonance optical application. Opt. Mater. 51, 98–103 (2016)ADSCrossRefGoogle Scholar
  38. Zarrabi, F.B., Bazgir, M., Ebrahimi, S., Saee Arezoomand, A.: Fano resonance for UI nano-array independent to the polarization providing bio-sensing applications. J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations