Advertisement

Numerical analysis of tin incorporated group IV alloy based MQWIP

  • Prakash Pareek
  • Ravi Ranjan
  • Mukul K. Das
Article
  • 30 Downloads
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

In this paper, a detailed theoretical analysis of the responsivity and frequency response in a strain balanced SiGeSn/GeSn multiple quantum well infrared photodetector (MQWIP) is presented. Initially, responsivity is calculated by solving continuity and rate equation at steady state considering inter well carrier transport mechanism. Transient response of the device is also derived to calculate bandwidth of the detector. Result shows that responsivity increases but bandwidth decreases with increase in number of wells. Further, responsivity bandwidth product in the MQWIP for different number of wells is also determined to study this trade-off.

Keywords

GeSn MQWIP Responsivity Bandwidth 

Notes

Acknowledgements

This work is partly supported by the Center of Excellence in Renewable Energy, project under MHRD, Govt. of India (F. No. 5-6/2013-TS-VII) at Indian Institute of Technology (Indian School of Mines) Dhanbad, India.

References

  1. Ang, K.W., et al.: Silicon photonics technologies for monolithic electronic–photonic integrated circuit (EPIC) applications: current progress and future outlook. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), Baltimore, pp. 1–4 (2009)Google Scholar
  2. Bhattacharya, P.: Semiconductor Optoelectronic Devices, 2nd edn. Pearson Education Inc., New Jersey (1994)Google Scholar
  3. Chang, G.E., Chang, S.W., Chuang, S.L.: Strain-balanced GezSn1–zSixGeySn1–x–y multiple-quantum-well lasers. IEEE JQE 46, 1813–1820 (2010)CrossRefGoogle Scholar
  4. Das, M.K., Das, N.R.: Calculating the responsivity of a resonant cavity enhanced Si1−xGex/Si multiple quantum well photodetector. JAP 105, 093118:1–093118:8 (2009)Google Scholar
  5. Daukes Ekin, N.J., Kawaguchi, K., Zhang, J.: Strain-balanced criteria for multiple quantum well structures and its signature in X-ray rocking curves. Cryst. Growth Des. 2(4), 287–292 (2002)CrossRefGoogle Scholar
  6. Downs, C., Vandervelde, T.E.: Progress in infrared photodetectors since 2000. Sensors 13, 5054–5098 (2013)CrossRefGoogle Scholar
  7. El Kurdi, M., Kociniewski, T., Ngo, T.-P., Boulmer, J., Débarre, D., Boucaud, P., Damlencourt, J.F., Kermarrec, O., Bensahel, D.: Enhanced photoluminescence of heavily n-doped germanium. APL 94, 191107-1–191107-3 (2009)Google Scholar
  8. Ershov, M., Hamaguchi, C., Ryzhii, V.: Device physics and modelling of multiple quantum well infrared photodetectors. JJAP 35, 1395–1400 (1996)ADSGoogle Scholar
  9. Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials and carrier mobility in strained Si, Ge, and SiGe alloys. JAP 80, 2234–2252 (1996)ADSGoogle Scholar
  10. Gassenq, A., Gencarelli, F., Van Campenhout, J., Shimura, Y., Loo, R., Narcy, G., Vincent, B., Roelkens, G.: GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 20, 27297–27303 (2012)ADSCrossRefGoogle Scholar
  11. Ghetmiri, S.A., et al.: Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics. Opt. Lett. 42(3), 387–390 (2017)ADSCrossRefGoogle Scholar
  12. Guériaux, V., et al.: Quantum well infrared photodetectors: present and future. Opt. Eng. 50(6), 061013 (2011).  https://doi.org/10.1117/1.3584838 ADSCrossRefGoogle Scholar
  13. Kouvetakis, J., Menedez, J., Chizmeshya, A.V.G.: Tin based group IV semiconductors: new platforms for opto and micro electronics and silicon. Annu. Rev. Mater. Res. 36, 497–554 (2006)ADSCrossRefGoogle Scholar
  14. Levine, B.F.: Quantum well infrared photodetectors. J. Appl. Phys. 74, R1 (1993).  https://doi.org/10.1063/1.354252 ADSCrossRefGoogle Scholar
  15. Lo, G.Q., Ang, K.W., Liow, T.Y., Fang, Q., Zhang, J., Zhu, S.Y., Song, J.F., Xiong, Y.Z., Ren, F.F., Yu, M.B., Kwong, D.-L.: Silicon photonics technologies for monolithic electronic–photonic integrated circuit. ECS Trans. 28, 3–11 (2010)CrossRefGoogle Scholar
  16. Pareek, P., Das, M.K.: Theoretical analysis of direct transition in SiGeSn/GeSn strain balanced QWIP. Opt. Quantum Electron. 48, 1–11 (2016)CrossRefGoogle Scholar
  17. Pareek, P., Das, M.K., Kumar, S.: Theoretical analysis of tin incorporated group IV alloy based QWIP. Superlatt. Microstruct. 107, 56–68 (2017a)ADSCrossRefGoogle Scholar
  18. Pareek, P., Ranjan, R., Das, M.K.: Numerical analysis of Tin incorporated group IV alloy based MQWIP. In: Proceedings of 17th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Copenhagen, Denmark, pp. 141–142. IEEE Explorer (2017b).  https://doi.org/10.1109/nusod.2017.8010031
  19. Roelkens, G., et al.: Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE JSQE (2014).  https://doi.org/10.1109/jstqe.2013.2294460 Google Scholar
  20. Rogalski, A.: Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)ADSCrossRefGoogle Scholar
  21. Ryzhii, V.: Theory of quantum well IR photodetectors with tunneling electron injection. IEEE Proc. Optoelectron. 144, 343–349 (1997)CrossRefGoogle Scholar
  22. Ryzhii, V.: High-frequency performance of single quantum well infrared photodetectors at high power densities. IEEE Trans. Electron Devices 45(8), 1797–1803 (1998a)ADSCrossRefGoogle Scholar
  23. Ryzhii, V.: Impact of transit time and capture effects on high-frequency performance of multiple quantum well infrared photodetectors. IEEE Trans. Elect. Devices 45, 293–298 (1998b)ADSCrossRefGoogle Scholar
  24. Soref, R.A.: The past, present, and future of silicon photonics. IEEE JSTQE 12, 1678–1687 (2006)Google Scholar
  25. Sze, S.M.: Physics of Semiconductor Devices. Wiley-Interscience, New Jersey (1969)Google Scholar
  26. Werner, J., et al.: Germanium–tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy. APL 98(6), 061108 (2011).  https://doi.org/10.1063/1.3555439 Google Scholar
  27. Zheng, J., et al.: GeSn pin photodetectors with GeSn layer grown by magnetron sputtering epitaxy. APL 108(3), 033503 (2016).  https://doi.org/10.1063/1.4940194 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Department of Electronics and Communication EngineeringVaagdevi College of Engineering (Autonomous)Bollikunta, WarangalIndia
  3. 3.Department of Electrical and Electronics EngineeringDarbhanga College of EngineeringDarbhangaIndia

Personalised recommendations