Advertisement

Combination of high order polarization vortex beams using Hermite–Gauss beams

  • Jing-tao Xin
  • Ming-li Dong
  • Xiao-ping Lou
  • Lian-qing Zhu
Article
  • 74 Downloads

Abstract

A method to combine arbitrary order polarization vortex beams (PVBs) by Hermite–Gauss mode beams with designed field distributions is proposed. The orders of PVBs are determined by the modes of HG beams which are used in the combination scheme and the intensity distributions are the same as those of Laguerre–Gaussian beams. Simulations and experiments were also demonstrated, which verifies the feasibility of the proposed method.

Keywords

Polarization vortex beams Hermite–Gauss mode beams Combination 

Notes

Acknowledgements

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University, PCSIRT (IRT-16R07), the Project Plan of Beijing Municipal Commission of Science and Technology (Z151100003615010), the Project Plan of Beijing Municipal Commission of Education for Enhancing Innovation Capability in 2015 under Grant (TJSHG201510772016).

References

  1. Beijersbergen, M.W., Allen, L., van der Veen, H.E.L.O.: Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)ADSCrossRefGoogle Scholar
  2. Bomzon, Z., Biener, G., Kleiner, V., Hasman, E.: Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002)ADSCrossRefGoogle Scholar
  3. Jones, P.H., Rashid, M., Makita, M., Maragò, O.M.: Sagnac interferometer method for synthesis of fractional polarization vortices. Opt. Lett. 34, 2560–2562 (2009)ADSCrossRefGoogle Scholar
  4. Koechner, W.: Solid-State Laser Engineering, p. 172. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  5. Machavariani, G., Lumer, Y., Moshe, I., Meir, A., Jackel, S.: Spatially-variable retardation plate for efficient generation of radially-and azimuthally-polarized beams. Opt. Commun. 281, 732–738 (2008)ADSCrossRefGoogle Scholar
  6. Maurer, C., Jesacher, A., Fürhapter, S., Bernet, S., Ritsch-Marte, M.: Tailoring of arbitrary optical vector beams. N. J. Phys. 9(3), 78 (2007)CrossRefGoogle Scholar
  7. McEldowney, S.C., Shemo, D.M., Chipman, R.A.: Vortex retarders produced from photo-aligned liquid crystal polymers. Opt. Express 16, 7295–7308 (2008)ADSCrossRefGoogle Scholar
  8. Meier, M., Romano, V., Feurer, T.: Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 86, 329–334 (2007)ADSCrossRefGoogle Scholar
  9. Niziev, V.G., Nesterov, A.V.: Influence of beam polarization on laser cutting efficiency. J. Phys. D 32, 1455–1461 (1999)ADSCrossRefGoogle Scholar
  10. Passilly, N., de Saint Denis, R., Aït-Ameur, K., Treussart, F., Hierle, R., Roch, J.-F.: Simple interferometric technique for generation of a radially polarized light beam. J. Opt. Soc. Am. A 22, 984–991 (2005)ADSCrossRefGoogle Scholar
  11. Phual, P.B., Lai, W.J.: Simple coherent polarization manipulation scheme for generating high power radially polarized beam. Opt. Express 15, 14251–14256 (2007)ADSCrossRefGoogle Scholar
  12. Tidwell, S.C., Ford, D.H., Kimura, W.D.: Generating radially polarized beams interferometrically. Appl. Opt. 29, 2234–2239 (1990)ADSCrossRefGoogle Scholar
  13. Wang, X.L., Ding, J., Ni, W.J., Guo, C.S., Wang, H.T.: Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett. 32, 3549–3551 (2007)ADSCrossRefGoogle Scholar
  14. Zhan, Q.: Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Opt. Lett. 31, 1726–1728 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jing-tao Xin
    • 1
    • 2
    • 3
  • Ming-li Dong
    • 1
    • 2
    • 3
  • Xiao-ping Lou
    • 1
    • 2
    • 3
  • Lian-qing Zhu
    • 1
    • 2
    • 3
  1. 1.Beijing Engineering Research Center of Optoelectronic Information and InstrumentsBeijing Information Science and Technology UniversityBeijingChina
  2. 2.Key Laboratory of Modern Measurement Control Technology, Ministry of EducationBeijingChina
  3. 3.Beijing Key Laboratory of Optoelectronic Test TechnologyBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations