Skip to main content
Log in

Discrete and selective absorption in crystalline molecular nanofilms

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recent research in nano-optical engineering and in nanomedicine as well, seeks for methods of construction of various types of nano-markers, nano-carriers, and ways to deliver drugs to the exactly determined regions of body. In this process it is important to find methods of recognition of certain types of molecules. It is obvious that optical recognition would be the easiest and the most effective way to do it. Our research presents a model of a molecular ultrathin crystalline film and generated exciton system inside it and corresponding methodology of analysis of their optical characteristics. Properties of these spatially very restricted structures are very sensitive to their surrounding surfaces. Using the two-time Green’s functions adapted for crystalline structures with symmetry breaking, and graphical-numerical software, we have calculated the energy spectra and possible exciton states. We have shown that the appearance and the presence of localized states on the surfaces and in the boundary layers of the film depend on the thickness of the film and the film surroundings, presented through the perturbation of parameters on surfaces. Optical properties in these structures demonstrate discrete and very selective resonant absorption spectra, depending on the perturbation on their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agranovich, V.M., Ginzburg, V.L.: Crystal Optic with Space Dispersion and Theory of Excitons. Nauka, Moskwa (1979). (in Russian)

    Google Scholar 

  • Agranovich, V.M., Toshich, B.S.: Collective properties of Frenkel excitons. Zh. Eksp. Teor. Fiz. 53, 149–162 (1967) [Sov. Phys. JETP 26, 104–112 (1968)]

  • Chan, W.C.W.: Bionanotechnology progress and advances. Biol. Blood Marrow Transplant. 12, 87–91 (2006)

    Article  Google Scholar 

  • Delerue, C., Lannoo, M.: Nanostructures—Theory and Modelling. Springer, Berlin (2009)

    Google Scholar 

  • Dzyaloshinskii, I.E., Pitaevskii, L.P.: Van der Waals Forces in an inhomogeneous dielectric. Zh. Eksp. Teor. Fiz. 36, 1797–1805 (1959) [Sov. Phys. JETP 9, 1282–1287 (1959)]

  • Frasch, W., Spetzler, D.: Thin film delivers drugs. Biophotonics, TEMPE, Ariz., http://www.photonics.com (2008). 26 Mar 2008

  • Kasap, S., Koughia, C., Singh, J., Ruda, H., OʼLeary, S.: Optical properties of electronic materials—fundamentals and characterization. In: Kasap, S., Capper, P. (eds.) Springer handbook of electronic and photonic materials, Springer, Boston (2006); ISBN: 978-0-387-26059-4, https://doi.org/10.1007/978-0-387-29185-7_3

  • Mahan, G.: Many Particle Physics. Plenum Press, New York (1990)

    Book  Google Scholar 

  • Maradudin, A.A.: Interaction of surface polaritons and plasmons with surface roughness. In: Agranovich, V.M., Mills, D.L. (eds.) Surface Polaritons, pp. 405–510. North-Holland, Amsterdam (1982)

    Google Scholar 

  • Maradudin, A.A.: Light scattering and nanoscale surface roughness. In: Lockwood, D.J. (ed.) Nanostructure Science and Technology. Springer, New York (2007)

    Google Scholar 

  • Morrow, K.J., Bawa, R., Wei, C.: Recent advances in basic and clinical nanomedicine. Med. Clin. N. Am. 91, 805–843 (2007)

    Article  Google Scholar 

  • Sajfert, V.D., Šetrajčić, J.P., Popov, D., Tošić, B.S.: Difference equations in condensed matter physics and their applications to the exciton system in thin molecular film. Phys. A 353, 217–234 (2005)

    Article  Google Scholar 

  • Sajfert, V., Jaćimovski, S., Popov, D., Tošić, B.: Statistical and dynamical equivalence of different elementary cells. J. Comput. Theor. Nanosci. 4(3), 1–8 (2007)

    Article  Google Scholar 

  • Sajfert, V.D., Šetrajčić, J.P., Jaćimovski, S.K., Popov, D.: Application of difference calculus and difference equations to investigation of specific nanostructure properties. Quantum Matter 3(4), 307–314 (2014). https://doi.org/10.1166/qm.2014.1129

    Article  Google Scholar 

  • Schaefer, H.E.: Nanoscience—The Science of the Small in Physics Engineering Chemistry Biology and Medicine. Springer, Berlin (2010). ISBN 978-3-642-10559-3

    Book  Google Scholar 

  • Scholes, G.D., Rumbles, G.: Excitons in nanoscale systems, Nat. Mater. 5: 683–696 (2006). https://doi.org/10.1038/nmat1710; https://www.nature.com/articles/nmat1710

  • Šetrajčić, J.P.: Adequate determination of micro and macro properties of optical nano-crystals. Opto-Electron Rev. 25(4), 303–310 (2017). https://doi.org/10.1016/j.opelre.2017.08.003

    Article  Google Scholar 

  • Šetrajčić, J.P., Ilić, D.I., Markoski, B., Šetrajčić, A.J., Vučenović, S.M., Mirjanić, D.L., Škipina, B., Pelemiš, S.: Adapting and application of the green’s functions method onto research of the molecular ultrathin film optical properties. Physica Scripta T 135(014043), 1–4 (2009)

    Google Scholar 

  • Šetrajčić, J.P., Jaćimovski, S.K., Sajfert, V.D., Šetrajčić, I.J.: Specific quantum mechanical solution of difference equation of hyperbolic type. Commun. Nonlinear Sci. Numer. Simulat. 19(5), 1313–1328 (2014). https://doi.org/10.1016/j.cnsns.2013.08.026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Šetrajčić, J.P., Rodić, D., Šetrajčić, J.P.: Optical properties of layers of symmetric molecular nanofilms. J. Opt. 44(1), 1–6 (2015). https://doi.org/10.1007/s12596-014-0231-8

    Article  Google Scholar 

  • Šetrajčić, I.J., Rodić, D., Šetrajčić, J.P., Vučenović, S.M., Šetrajčić-Tomić, A.J., Vojnović, M.: Optical peculiarities of various molecular crystalline nanofilms. Zastita Materijala 58(3), 377–384 (2017). https://doi.org/10.5937/ZasMat1703377S

    Article  Google Scholar 

  • Simmons, J.H., Potter, K.S.: Optical Materials, Academic, San Diego (2000); ISBN-13:978-0126441406, https://trove.nla.gov.au/work/6523117

  • Singh, J.: Excitation energy transfer processes in condensed matter, Springer, New York (1994); ISBN 978-1-4899-0996-1, http://www.springer.com/us/book/9780306447808

  • Škipina, B., Mirjanić, D.L., Vučenović, S.M., Šetrajčić, J.P., Šetrajčić, I.J., Šetrajčić-Tomić, A.J., Pelemiš, S.S., Markoski, B.: Selective IR absorption in molecular nanofilms. Opt. Mater. 33, 1578–1584 (2011). https://doi.org/10.1016/j.optmat.2011.04.008

    Article  ADS  Google Scholar 

  • Tringides, M.C., Jatochawski, M., Bauer, E.: Quantum size effects in metallic nanostructures. Phys. Today 60, 50–54 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants: OI–171039 and TR–34019) and by the Provincial Secretariat for High Education, Science and Technological Development of Vojvodina (Grant: 114-451-2092/2016) as well as by the Ministry of Science and Technological Development of the Republic of Srpska (Grant: 19/6-020/961-16/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan P. Šetrajčić.

Additional information

This article is part of the Topical Collection on Focus on Optics and Bio-photonics, Photonica 2017.

Guest Edited by Jelena Radovanovic, Aleksandar Krmpot, Marina Lekic, Trevor Benson, Mauro Pereira, Marian Marciniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vojnović, M., Šetrajčić-Tomić, A.J., Vučenović, S.M. et al. Discrete and selective absorption in crystalline molecular nanofilms. Opt Quant Electron 50, 198 (2018). https://doi.org/10.1007/s11082-018-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1443-y

Keywords

Navigation