Skip to main content

Electronic conduction mechanism and optical spectroscopy of Indigo carmine as novel organic semiconductors

Abstract

Indigo carmine (IC) is an organic material dye that can be used as an organic semiconductor. The IC powder pellet was characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy, AC\DC electric conductivity and optical diffused reflectance spectroscopy. The XRD measurements revealed that the IC powder is crystallized in triclinic system structure with the space group P1 and both the optimized lattice and refinement cell parameters have calculated before and after refinement for the first time by using the program Crysfire and Checkcell software. The Kubelka–Munk model was used to determine the band gap energies of the IC powder pellet. Based on this model, the IC powder pellet presents two band gaps equal to 1.982 and 1.689 eV in the studied photon energy ranges. The first optical band gap (1.982 eV) is related to the basic HOMO–LUMO transition, and the other optical transition gap (1.689) is related to the trap inside the HOMO–LUMO gap i.e. onset/inset gap. The multi-band gap of IC powder can enhance the light absorption and can make this material suitable for organic solar cell devices. The dielectric parameters are analyzed and investigated. The DC electrical conductivity upon reciprocal (1000/T) of IC powder was determined by using the two-probe electrical conductivity measuring instrument. The AC electrical conductivity and dielectric properties can support the charge-hopping carriers of barriers of various heights. IC is a promising organic semiconductor material for various aspects in the field of organic technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bhattacharyya, S., Kymakis, E., Amaratunga, G.A.J.: Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004)

    Article  Google Scholar 

  2. Burgess, A.N., Mackay, M., Abbott, S.J.: Comparison of transient thermal conduction in tellurium and organic dye based digital optical storage media. J. Appl. Phys. 61, 74–80 (1987)

    ADS  Article  Google Scholar 

  3. El-Kabbany, F., Taha, S., Hafez, M.: A study of the phase transition of reheated diphenyl carbazide (DPC) by using UV spectroscopy. Spectrochim. Acta Part A 128, 481–488 (2014)

    ADS  Article  Google Scholar 

  4. Fan, J., He, H., Wan, X., Chen, X., Zhou, Q.: Blue light-emitting coil-rod-coil block oligomers with rigid p-hexaphenyl as chromophore. Chin. J. Polym. Sci. 24, 115–124 (2006)

    Article  Google Scholar 

  5. Fouad, S.S., Sakr, G.B., Yahia, I.S., Abdel-Basset, D.M., Yakuphanoglu, F.: Impedance spectroscopy of p-ZnGa2Te4/n-Si nano-HJD. Phys. B 415, 82–91 (2013)

    ADS  Article  Google Scholar 

  6. Fleischmann, C., Lievenbrück, M., Ritter, H.: Polymers, and dyes: developments and applications. Polymers 7, 717–746 (2015)

    Article  Google Scholar 

  7. Głowacki, E.D., Voss, G., Leonat, L., Irimia-Vladu, M., Bauer, S., Sariciftci, N.S.: Indigo and tyrian purple—from ancient natural dyes to modern organic semiconductors. Isr. J. Chem. 52, 1–12 (2012)

    Article  Google Scholar 

  8. Gutman, F., Lyons, L.E.: Organic Semiconductors. Wiley, New York (1967)

    Google Scholar 

  9. Gür, B., Meral, K.: The effect of poly(vinyl alcohol) on the photophysical properties of pyronin dyes in aqueous solution: a spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 101, 306–313 (2013)

    ADS  Article  Google Scholar 

  10. Hafeza, M., Yahia, I.S., Taha, S.: Study of the diffused reflectance and microstructure for the phase transformation of KNO3. Acta Phys. Pol. A 127, 734–740 (2015)

    Article  Google Scholar 

  11. Hakansson, E., Lin, T., Wang, H., Kaynak, A.: The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole. Synth. Metals 156, 1194–1202 (2006)

    Article  Google Scholar 

  12. Hu, P., Zhu, H., He, C., Rex, X.: Heat transfer and thermal deformation characteristics of liquid-cooled laser mirror. Adv. Mech. Eng. (2014). https://doi.org/10.1155/2014/749065

    Google Scholar 

  13. Huang, H., Zhang, P., Qiu, K., Huang, J., Chen, Y., Ji, L., Chao, H.: Mitochondrial dynamics tracking with two-photon phosphorescent terpyridyl iridium(III) complexes. Sci. Rep. 6, 20887 (2016)

    ADS  Article  Google Scholar 

  14. Jonscher, A.K.: The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    ADS  Article  Google Scholar 

  15. Kharrat, H., Elfaleh, N., Kamoun, S.: Synthesis, crystal structure and dielectric properties of C6H18N2SbCl5. J. Phys. Org. Chem. (2016). https://doi.org/10.1002/poc.3577

    Google Scholar 

  16. Kaygilia, O., Keserb, S., Atesa, T., Keser, S., Al-Ghamdi, A.A., Yakuphanoglu, F.: Controlling of dialectical properties of hydroxyapatite bye thylene diaminete traaceticacid (EDTA) for bone healing applications. Spectrochim. Acta Part A 129, 268–273 (2014)

    ADS  Article  Google Scholar 

  17. Lakshmi, U.R., Srivastava, V.C., Mall, I.D., Lataye, D.H.: Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for Indigo Carmine dye. J. Environ. Manag. 90, 710–720 (2009)

    Article  Google Scholar 

  18. Liu, Q.J., Yan, W.G., Wang, L., Zhang, X.P., Tang, Y.: One-pot catalytic asymmetric synthesis of tetrahydrocarbazoles. Org. Lett. 17, 4014–4017 (2015)

    Article  Google Scholar 

  19. Malčić, V.D., Mikočević, Ž.B., Itrić, K.: Kubelka–Munk theory in describing optical properties of paper (I). Tech. Gaz. 18, 117–124 (2011)

    Google Scholar 

  20. Mansour, ShA, Yahia, I.S., Yakuphanoglu, F.: The electrical conductivity and dielectric properties of CI basic violet 10. Dyes Pigm. 87, 144–148 (2010)

    Article  Google Scholar 

  21. Marmarion, D.M.: Handbook of U.S. Colorants for Food, Drugs, and Cosmetics. Wiley, New York (1979)

    Google Scholar 

  22. Masoud, M.S., El-Enein, S.A., El-Shereafy, E.: Electrical conductivity properties of some O-substituted arylazo—barbiturate complexes at different temperatures. J. Therm. Anal. 37, 365–373 (1991)

    Article  Google Scholar 

  23. Moiz, S.A., Ahmed, M.M., Karimov, K.S., Rehman, F., Lee, J.H.: Space charge limited current–voltage characteristics of organic semiconductor diode fabricated at various gravity conditions. Synth. Metals 159, 1336–1339 (2009)

    Article  Google Scholar 

  24. Murphy, A.B.: Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)

    Article  Google Scholar 

  25. Ricordel, S., Taha, S., Cisse, I., Dorange, G.: Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep. Purif. Technol. 24, 389–401 (2001)

    Article  Google Scholar 

  26. Roling, B., Happe, A., Funke, K., Ingram, M.D.: Carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 78, 2160–2163 (1997)

    ADS  Article  Google Scholar 

  27. Samet, L.Ben, Nasseur, J., Chtourou, R., March, K., Stephan, O.: Heat treatment effect on the physical properties of cobalt doped TiO2 sol–gel materials. Mater. Charact. 85, 1–12 (2013)

    Article  Google Scholar 

  28. Schroderand, U., Scholz, F.: Microscopic in situ diffuse reflectance spectroelectrochemistry of solid state electrochemical reactions of particles immobilized on electrodes. J. Solid State Electrochem. 1(1), 62–67 (1997)

    Article  Google Scholar 

  29. Schatzschneider, U., Weyhermüller, T., Rentschler, E.: Metal complexes with nitronyl nitroxide substituted phenolate ligands providing new magnetic exchange interaction pathways—synthesis, structures, magnetic dilution studies, and ab initio calculations. Eur. J. Inorg. Chem. 2001, 2569–2586 (2001)

    Article  Google Scholar 

  30. Simmons, E.L.: Diffuse reflectance spectroscopy: a comparison of the theories. Appl. Opt. 14, 1380–1386 (1975)

    ADS  Article  Google Scholar 

  31. Stewart, I., Wheaton, T.A.: Continuous flow separation of carotenoids by liquid chromatography. J. Chromatogr. 55, 325–336 (1971)

    Article  Google Scholar 

  32. Stockert, J.C., Trigoso, C.I.: Selective fluorescence reaction of indigocarmine stained eosinophil leucocyte granules induced by alkaline reduction of the bound dye to its leuco derivative. Acta Histochem. 96, 8–14 (1994)

    Article  Google Scholar 

  33. Sun, H.B., Tanaka, T., Takada, K., Kawata, S.: Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett. 79, 1411–1413 (2001)

    ADS  Article  Google Scholar 

  34. Tataroglu, A., Altındal, S., Bulbul, M.M.: Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure. Microelectron. Eng. 81, 140–149 (2005)

    Article  Google Scholar 

  35. Torrent, J., Barron, V.: Encyclopedia of Surface and Colloid Science, edited by Hubbard. CRC Press, New York (2002)

    Google Scholar 

  36. Vasey, V., Stephenson, M.I.: Investigation of enhanced conductivity in dye-coated tin oxide thin films using Hall voltage measurements. J. Phys. D Appl. Phys. 26, 89–92 (1993)

    ADS  Article  Google Scholar 

  37. Yahia, I.S., Zahran, H.Y., Alamri, F.H.: Pyronin Y as new organic semiconductors: structure, optical spectroscopy and electrical/dielectric properties. Synth. Metals 218, 19–26 (2016)

    Article  Google Scholar 

  38. Yahia, I.S.: Conduction mechanism of 4-aminoantipyrine as a new organic semiconductor. Acta Phys. Pol. A 125, 1167–1171 (2014)

    Article  Google Scholar 

  39. Yakuphanoglu, F., Kandaz, M., Yarasır, M.N., Senkal, F.B.: Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B 393, 235–238 (2007)

    ADS  Article  Google Scholar 

  40. Yakuphanoglu, F.: Ph.D Thesis, Firat University, Elazig, Turkey (2002)

  41. Yakuphanoglu, F., Aydogdu, Y., Schatzschneider, U., Rentschler, E.: DC and AC conductivity and dielectric properties of the metal-radical compound: aqua [bis(2-dimethylaminomethyl-4-NIT-phenolato)] copper(II). Solid State Commun. 128, 63–67 (2003)

    ADS  Article  Google Scholar 

  42. Zaafouri, A., Megdiche, M., Gargouri, M.: AC conductivity and dielectric behavior in lithium and sodium diphosphate LiNa3P2O7. J. Alloys Compd. 584, 152–158 (2014)

    Article  Google Scholar 

  43. Zhang, J., Wu, T., Feng, P., Bu, X.: In situ synthesis of tetradentate dye for construction of three-dimensional homochiral phosphor. Chem. Mater. 20, 5457–5459 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to The Research Center for Advanced Material Science (RCAMS) at King Khalid University, with Grant Number (RCAMS-1-17-5).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Bouzidi or I. S. Yahia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, A., Yahia, I.S., Jilani, W. et al. Electronic conduction mechanism and optical spectroscopy of Indigo carmine as novel organic semiconductors. Opt Quant Electron 50, 176 (2018). https://doi.org/10.1007/s11082-018-1439-7

Download citation

Keywords

  • Indigo carmine powder
  • Crystal structure
  • Dielectric permittivity
  • Optical diffused reflectance
  • Kubelka–Munk model
  • AC\DC electrical conductivity
  • Dielectric properties