Electronic conduction mechanism and optical spectroscopy of Indigo carmine as novel organic semiconductors

  • A. Bouzidi
  • I. S. Yahia
  • W. Jilani
  • S. M. El-Bashir
  • S. AlFaify
  • H. Algarni
  • H. Guermazi


Indigo carmine (IC) is an organic material dye that can be used as an organic semiconductor. The IC powder pellet was characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy, AC\DC electric conductivity and optical diffused reflectance spectroscopy. The XRD measurements revealed that the IC powder is crystallized in triclinic system structure with the space group P1 and both the optimized lattice and refinement cell parameters have calculated before and after refinement for the first time by using the program Crysfire and Checkcell software. The Kubelka–Munk model was used to determine the band gap energies of the IC powder pellet. Based on this model, the IC powder pellet presents two band gaps equal to 1.982 and 1.689 eV in the studied photon energy ranges. The first optical band gap (1.982 eV) is related to the basic HOMO–LUMO transition, and the other optical transition gap (1.689) is related to the trap inside the HOMO–LUMO gap i.e. onset/inset gap. The multi-band gap of IC powder can enhance the light absorption and can make this material suitable for organic solar cell devices. The dielectric parameters are analyzed and investigated. The DC electrical conductivity upon reciprocal (1000/T) of IC powder was determined by using the two-probe electrical conductivity measuring instrument. The AC electrical conductivity and dielectric properties can support the charge-hopping carriers of barriers of various heights. IC is a promising organic semiconductor material for various aspects in the field of organic technology.


Indigo carmine powder Crystal structure Dielectric permittivity Optical diffused reflectance Kubelka–Munk model AC\DC electrical conductivity Dielectric properties 



The authors are grateful to The Research Center for Advanced Material Science (RCAMS) at King Khalid University, with Grant Number (RCAMS-1-17-5).


  1. Bhattacharyya, S., Kymakis, E., Amaratunga, G.A.J.: Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004)CrossRefGoogle Scholar
  2. Burgess, A.N., Mackay, M., Abbott, S.J.: Comparison of transient thermal conduction in tellurium and organic dye based digital optical storage media. J. Appl. Phys. 61, 74–80 (1987)ADSCrossRefGoogle Scholar
  3. El-Kabbany, F., Taha, S., Hafez, M.: A study of the phase transition of reheated diphenyl carbazide (DPC) by using UV spectroscopy. Spectrochim. Acta Part A 128, 481–488 (2014)ADSCrossRefGoogle Scholar
  4. Fan, J., He, H., Wan, X., Chen, X., Zhou, Q.: Blue light-emitting coil-rod-coil block oligomers with rigid p-hexaphenyl as chromophore. Chin. J. Polym. Sci. 24, 115–124 (2006)CrossRefGoogle Scholar
  5. Fouad, S.S., Sakr, G.B., Yahia, I.S., Abdel-Basset, D.M., Yakuphanoglu, F.: Impedance spectroscopy of p-ZnGa2Te4/n-Si nano-HJD. Phys. B 415, 82–91 (2013)ADSCrossRefGoogle Scholar
  6. Fleischmann, C., Lievenbrück, M., Ritter, H.: Polymers, and dyes: developments and applications. Polymers 7, 717–746 (2015)CrossRefGoogle Scholar
  7. Głowacki, E.D., Voss, G., Leonat, L., Irimia-Vladu, M., Bauer, S., Sariciftci, N.S.: Indigo and tyrian purple—from ancient natural dyes to modern organic semiconductors. Isr. J. Chem. 52, 1–12 (2012)CrossRefGoogle Scholar
  8. Gutman, F., Lyons, L.E.: Organic Semiconductors. Wiley, New York (1967)Google Scholar
  9. Gür, B., Meral, K.: The effect of poly(vinyl alcohol) on the photophysical properties of pyronin dyes in aqueous solution: a spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 101, 306–313 (2013)ADSCrossRefGoogle Scholar
  10. Hafeza, M., Yahia, I.S., Taha, S.: Study of the diffused reflectance and microstructure for the phase transformation of KNO3. Acta Phys. Pol. A 127, 734–740 (2015)CrossRefGoogle Scholar
  11. Hakansson, E., Lin, T., Wang, H., Kaynak, A.: The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole. Synth. Metals 156, 1194–1202 (2006)CrossRefGoogle Scholar
  12. Hu, P., Zhu, H., He, C., Rex, X.: Heat transfer and thermal deformation characteristics of liquid-cooled laser mirror. Adv. Mech. Eng. (2014). Google Scholar
  13. Huang, H., Zhang, P., Qiu, K., Huang, J., Chen, Y., Ji, L., Chao, H.: Mitochondrial dynamics tracking with two-photon phosphorescent terpyridyl iridium(III) complexes. Sci. Rep. 6, 20887 (2016)ADSCrossRefGoogle Scholar
  14. Jonscher, A.K.: The ‘universal’ dielectric response. Nature 267, 673–679 (1977)ADSCrossRefGoogle Scholar
  15. Kharrat, H., Elfaleh, N., Kamoun, S.: Synthesis, crystal structure and dielectric properties of C6H18N2SbCl5. J. Phys. Org. Chem. (2016). Google Scholar
  16. Kaygilia, O., Keserb, S., Atesa, T., Keser, S., Al-Ghamdi, A.A., Yakuphanoglu, F.: Controlling of dialectical properties of hydroxyapatite bye thylene diaminete traaceticacid (EDTA) for bone healing applications. Spectrochim. Acta Part A 129, 268–273 (2014)ADSCrossRefGoogle Scholar
  17. Lakshmi, U.R., Srivastava, V.C., Mall, I.D., Lataye, D.H.: Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for Indigo Carmine dye. J. Environ. Manag. 90, 710–720 (2009)CrossRefGoogle Scholar
  18. Liu, Q.J., Yan, W.G., Wang, L., Zhang, X.P., Tang, Y.: One-pot catalytic asymmetric synthesis of tetrahydrocarbazoles. Org. Lett. 17, 4014–4017 (2015)CrossRefGoogle Scholar
  19. Malčić, V.D., Mikočević, Ž.B., Itrić, K.: Kubelka–Munk theory in describing optical properties of paper (I). Tech. Gaz. 18, 117–124 (2011)Google Scholar
  20. Mansour, ShA, Yahia, I.S., Yakuphanoglu, F.: The electrical conductivity and dielectric properties of CI basic violet 10. Dyes Pigm. 87, 144–148 (2010)CrossRefGoogle Scholar
  21. Marmarion, D.M.: Handbook of U.S. Colorants for Food, Drugs, and Cosmetics. Wiley, New York (1979)Google Scholar
  22. Masoud, M.S., El-Enein, S.A., El-Shereafy, E.: Electrical conductivity properties of some O-substituted arylazo—barbiturate complexes at different temperatures. J. Therm. Anal. 37, 365–373 (1991)CrossRefGoogle Scholar
  23. Moiz, S.A., Ahmed, M.M., Karimov, K.S., Rehman, F., Lee, J.H.: Space charge limited current–voltage characteristics of organic semiconductor diode fabricated at various gravity conditions. Synth. Metals 159, 1336–1339 (2009)CrossRefGoogle Scholar
  24. Murphy, A.B.: Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)CrossRefGoogle Scholar
  25. Ricordel, S., Taha, S., Cisse, I., Dorange, G.: Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep. Purif. Technol. 24, 389–401 (2001)CrossRefGoogle Scholar
  26. Roling, B., Happe, A., Funke, K., Ingram, M.D.: Carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 78, 2160–2163 (1997)ADSCrossRefGoogle Scholar
  27. Samet, L.Ben, Nasseur, J., Chtourou, R., March, K., Stephan, O.: Heat treatment effect on the physical properties of cobalt doped TiO2 sol–gel materials. Mater. Charact. 85, 1–12 (2013)CrossRefGoogle Scholar
  28. Schroderand, U., Scholz, F.: Microscopic in situ diffuse reflectance spectroelectrochemistry of solid state electrochemical reactions of particles immobilized on electrodes. J. Solid State Electrochem. 1(1), 62–67 (1997)CrossRefGoogle Scholar
  29. Schatzschneider, U., Weyhermüller, T., Rentschler, E.: Metal complexes with nitronyl nitroxide substituted phenolate ligands providing new magnetic exchange interaction pathways—synthesis, structures, magnetic dilution studies, and ab initio calculations. Eur. J. Inorg. Chem. 2001, 2569–2586 (2001)CrossRefGoogle Scholar
  30. Simmons, E.L.: Diffuse reflectance spectroscopy: a comparison of the theories. Appl. Opt. 14, 1380–1386 (1975)ADSCrossRefGoogle Scholar
  31. Stewart, I., Wheaton, T.A.: Continuous flow separation of carotenoids by liquid chromatography. J. Chromatogr. 55, 325–336 (1971)CrossRefGoogle Scholar
  32. Stockert, J.C., Trigoso, C.I.: Selective fluorescence reaction of indigocarmine stained eosinophil leucocyte granules induced by alkaline reduction of the bound dye to its leuco derivative. Acta Histochem. 96, 8–14 (1994)CrossRefGoogle Scholar
  33. Sun, H.B., Tanaka, T., Takada, K., Kawata, S.: Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett. 79, 1411–1413 (2001)ADSCrossRefGoogle Scholar
  34. Tataroglu, A., Altındal, S., Bulbul, M.M.: Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure. Microelectron. Eng. 81, 140–149 (2005)CrossRefGoogle Scholar
  35. Torrent, J., Barron, V.: Encyclopedia of Surface and Colloid Science, edited by Hubbard. CRC Press, New York (2002)Google Scholar
  36. Vasey, V., Stephenson, M.I.: Investigation of enhanced conductivity in dye-coated tin oxide thin films using Hall voltage measurements. J. Phys. D Appl. Phys. 26, 89–92 (1993)ADSCrossRefGoogle Scholar
  37. Yahia, I.S., Zahran, H.Y., Alamri, F.H.: Pyronin Y as new organic semiconductors: structure, optical spectroscopy and electrical/dielectric properties. Synth. Metals 218, 19–26 (2016)CrossRefGoogle Scholar
  38. Yahia, I.S.: Conduction mechanism of 4-aminoantipyrine as a new organic semiconductor. Acta Phys. Pol. A 125, 1167–1171 (2014)CrossRefGoogle Scholar
  39. Yakuphanoglu, F., Kandaz, M., Yarasır, M.N., Senkal, F.B.: Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B 393, 235–238 (2007)ADSCrossRefGoogle Scholar
  40. Yakuphanoglu, F.: Ph.D Thesis, Firat University, Elazig, Turkey (2002)Google Scholar
  41. Yakuphanoglu, F., Aydogdu, Y., Schatzschneider, U., Rentschler, E.: DC and AC conductivity and dielectric properties of the metal-radical compound: aqua [bis(2-dimethylaminomethyl-4-NIT-phenolato)] copper(II). Solid State Commun. 128, 63–67 (2003)ADSCrossRefGoogle Scholar
  42. Zaafouri, A., Megdiche, M., Gargouri, M.: AC conductivity and dielectric behavior in lithium and sodium diphosphate LiNa3P2O7. J. Alloys Compd. 584, 152–158 (2014)CrossRefGoogle Scholar
  43. Zhang, J., Wu, T., Feng, P., Bu, X.: In situ synthesis of tetradentate dye for construction of three-dimensional homochiral phosphor. Chem. Mater. 20, 5457–5459 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Unit, Physics of Insulating and Semi Insulating Materials, Faculty of SciencesUniversity of SfaxSfaxTunisia
  2. 2.Technical and Vocational Training Corporation: Technical College BranchAhad RufidahSaudi Arabia
  3. 3.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab, Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt
  5. 5.Department of Physics, and Astronomy, Science CollegeKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Department of Physics, Faculty of ScienceBenha UniversityBanhaEgypt
  7. 7.Department of Physics, Zahran Al Janoob, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations