Advertisement

Polarization and p-type doping effects on photoresponse of separate absorption and multiplication AlGaN solar-blind avalanche photodiodes

Article
  • 110 Downloads

Abstract

The photoresponse characteristics of separate absorption and multiplication (SAM) AlGaN solar-blind avalanche photodiodes (APDs) were investigated in detail. The p-i-n-i-n avalanche photodiodes were examined using the newly designed model of avalanche photodiodes in AlGaN. The research results showed that the dark current density was about 3.51 × 10−8 A/cm2, the light current density was 5.86 × 10−5 A/cm2 under near-zero bias, and the avalanche breakdown occurred at about 135.0 V under reverse bias, which were all consistent with the experimental data. To investigate the effects influencing the photoresponse characteristics of the APDs, their photo responsivity spectra under different biases were simulated. The APD featured a window region over the wavelength range from 260 to 280 nm with a high rejection ratio on the short-wavelength side. Meanwhile, the dependence of APD responsivity on the polarization charge revealed that the negative polarization charges strongly affected the responsivity. Increased negative polarization charges at the Al0.4Ga0.6N/Al0.6Ga0.4N interface markedly lowered the responsivity, whereas charges of the same polarity at the GaN/Al0.4Ga0.6N interface enhanced the responsivity. Furthermore, the dependence of responsivity on p-type doping was analyzed by comparison with the effects of negative polarization charges on the conduction band of the APDs. Finally, the inversion layer models are used to interpret the effects of these on the APD responsivity. This research is useful for exploring polarization and p-type doping effects in SAM AlGaN structures and realization of high responsivity solar-blind APDs.

Keywords

AlGaN Solar blind Avalanche photodiodes Photo responsivity Negative polarization 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11574166), China Scholarship Council (Grant No. 201708320105), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 14KJA510005), and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (Grant No. PPZY2015B135). We thank Natasha Lundin, Ph.D., from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

  1. Ambacher, O., Foutz, B., Smart, J.: Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87(1), 334–344 (2000)CrossRefADSGoogle Scholar
  2. Chynoweth, A.G.: Ionization rates for electrons and holes in silicon. Phys. Rev. 109(5), 1537–1540 (1958)CrossRefADSGoogle Scholar
  3. Cicek, E., Vashaei, Z., McClintock, R., Bayram, C., Razeghi, M.: Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl. Phys. Lett. 96(26), 261107 (2010)CrossRefADSGoogle Scholar
  4. Cicek, E., Mcclintock, R., Vashaei, Z., Zhang, Y., Gautier, S., Cho, C.Y., Razeghia, M.: Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Appl. Phys. Lett. 102(5), 051102 (2013)CrossRefADSGoogle Scholar
  5. Gao, L.L.: Investigation of back-illuminated AlGaN avalanche photodiodes with p-type graded AlxGa1−xN layer. Opt. Quant. Electron. 47(7), 1933–1940 (2015)CrossRefGoogle Scholar
  6. Hu, W.D., Chen, X.S., Yin, F., Zhang, J.B., Lu, W.: Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors. J. Appl. Phys. 105(8), 2169 (2009)Google Scholar
  7. Huang, Y., Chen, D.J., Lu, H., Dong, K.X., Zhang, R., Zheng, Y.D., Li, L., Li, Z.H.: Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl. Phys. Lett. 101(25), 253516 (2012)CrossRefADSGoogle Scholar
  8. Huang, Z.Q., Li, J.F., Zhang, W.L., Jiang, H.: AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl. Phys. Express 6(5), 054101 (2013)CrossRefADSGoogle Scholar
  9. Hurkx, G.A.M., Klaassen, D.B.M., Knuvers, M.P.G.: A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 39(2), 331–338 (2002)CrossRefADSGoogle Scholar
  10. Levinshtein, M.E., Rumyantsev, S.L., Shur, M.: Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York (2008)Google Scholar
  11. Lim, S.H., Yu, E.T.: Ultraviolet and solar-blind spectral imaging with subwavelength transmission gratings. Appl. Phys. Lett. 95(16), 161107 (2009)CrossRefADSGoogle Scholar
  12. Malinowski, P.E., John, J., Duboz, J.Y., Hellings, G., Lorenz, A., Gabriel, J., Madrid, R., Sturdevant, C., Cheng, K., Leys, M.: Backside-illuminated GaN-on-Si schottky photodiodes for UV radiation detection. IEEE Electron Device Lett. 30(12), 1308–1310 (2009)CrossRefADSGoogle Scholar
  13. Marino, F.A., Cullen, D.A., Smith, D.J., McCartney, M.R., Saraniti, M.: Simulation of polarization charge on AlGaN/GaN high electron mobility transistors: comparison to electron holography. J. Appl. Phys. 107(5), 054516 (2010)CrossRefADSGoogle Scholar
  14. Muth, J.F., Lee, J.H., Shmagin, I.K., Kolbas, R.M., Casey, H.C., Keller, B.P., Mishra, U.K., DenBaars, S.P.: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71(18), 2572–2574 (1997)CrossRefADSGoogle Scholar
  15. Pau, J.L., Bayram, C., McClintock, R., Razeghi, M., Silversmith, D.: Back-illuminated separate absorption and multiplication GaN avalanche photodiodes. Appl. Phys. Lett. 92(10), 101120 (2008)CrossRefADSGoogle Scholar
  16. Phlyakov, V.M., Cimalla, V., Lebedev, V., Kohler, K., Muller, S., Waltereit, P., Ambacher, O.: Impact of Al content on transport properties of two-dimensional electron gas in GaN/AlxGa1−xN/GaN heterostructures. Appl. Phys. Lett. 97(14), 142112 (2010)CrossRefGoogle Scholar
  17. Piprek, J.: Nitride semiconductor devices: principles and simulation. Wiley-VCH, Berlin (2007)CrossRefGoogle Scholar
  18. Shao, Z.G., Chen, D.J., Lu, H., Zhang, R., Cao, D.P., Luo, W.J., Zheng, Y.D., Li, L., Li, Z.H.: High gain AlGaN Solar-blind avalanche photodiodes. IEEE Electron Device Lett. 35(3), 372–374 (2014)CrossRefADSGoogle Scholar
  19. Srour, H., Salvestrini, J.P., Ahaitouf, A., Gautier, S., Moudakir, T., Assouar, B., Abarkan, M., Hamady, S., Ougazzaden, A.: Solar blind metal-semiconductor-metal ultraviolet photodetectors using quasi-alloy of BGaN/GaN superlattices. Appl. Phys. Lett. 99(22), 221101 (2011)CrossRefADSGoogle Scholar
  20. Sun, L., Chen, J.L., Li, J.F., Jiang, H.: AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl. Phys. Lett. 97(19), 191103 (2010)CrossRefADSGoogle Scholar
  21. Takeuchi, K., Adachi, S., Ohtsuka, K.: Optical properties of AlxGa1−xN alloy. J. Appl. Phys. 107(2), 023306 (2010)CrossRefGoogle Scholar
  22. Wang, X.D., Hu, W.D., Chen, X.S., Xu, J.T., Wang, L., Li, X.Y., Lu, W.: Dependence of dark current and photoresponse characteristics on polarization charge density for GaN-based avalanche photodiodes. J. Phys. D Appl. Phys. 44(6), 405102 (2011)CrossRefGoogle Scholar
  23. Wang, X.D., Hu, W.D., Chen, X.S., Xu. J.T., Wang, L., Li, X.Y., Lu, W.: Electro-optical characteristics for AlGaN solar-blind p–i–n photodiode: Experiment and simulation. In: International conference on numerical simulation of optoelectronic devices, pp. 33–34 (2012)Google Scholar
  24. Wang, X.D., Hu, W.D., Pan, M., Hou, L.W., Xie, W., Xu, J.T., Li, X.Y., Chen, X.S., Lu, W.: Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. J. Appl. Phys. 115(1), 013103 (2014)CrossRefADSGoogle Scholar
  25. Wang, X.D., Chen, X.S., Hou, L.W., Wang, B.B., Xie, W., Pan, M.: Role of n-type AlGaN layer in photoresponse mechanism for separate absorption and multiplication (SAM) GaN/AlGaN avalanche photodiode. Opt. Quant. Electron. 47(6), 1357–1365 (2015)CrossRefGoogle Scholar
  26. Wu, H.L., Wu, W.C., Zhang, H.X., Chen, Y.D., Wu, Z.S., Wang, G., Jiang, H.: All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain. Appl. Phys. Express 9(5), 052103 (2016)CrossRefADSGoogle Scholar
  27. Yao, C.J., Ye, X.C., Sun, R., Yang, G.F., Wang, J.: High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors. Appl. Phys. Express 10(3), 034302 (2017)CrossRefADSGoogle Scholar
  28. Zhang, Y.P., Zhang, Z.H., Tan, S.T., Hernandez-Martinez, P.L., Zhu, B.B., Lu, S.P., Kang, X.J., Sun, X.W., Demir, H.V.: Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes. Appl. Phys. Lett. 110(3), 033506 (2017)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of ASIC DesignNantong UniversityNantongChina
  2. 2.Laboratory of Advanced MaterialFudan UniversityShanghaiChina

Personalised recommendations