Spectroscopic study of oscillator strength and radiative decay time of colloidal CdSe quantum dots

  • Abdelnasser Aboulfotouh
  • Mohamed Fikry
  • Mona Mohamed
  • Magdy Omar
  • Hossam Rady
  • Yahia Elbashar


Characterization of samples of cadmium selenide quantum dots (CdSe) QDs dissolved in toluene colloidal solutions at a concentration of 1.4 mg/ml was carried out through UV–Vis absorption and photoluminescence (PL) spectroscopy. The size-dependent absorption and red-shifted PL emission peak wavelengths could be tuned between 510–576 and 545–606 nm respectively. Optical absorption spectral measurements yielded CdSe QDs having diameters about ~ 2.44–3.69 nm with energy gaps 2.32–2.08 eV which are higher than the bulk CdSe (1.74 eV) reminiscent of quantum confinement. This is found to be in good agreement with the semi-empirical pseudopotential model. In addition, the first excitonic absorption transition 1S(e)1S3/2(h) oscillator strength and the corresponding fluorescence radiative decay time of CdSe QDs are assessed using relevant Einstein relations for absorption and emission in a two-level system. The elaborated calculations would anticipate that the transition oscillator scale with the CdSe QD radius as ~ R2.54. Correspondingly, the calculated radiative decay times decrease from 56.4 to 23.2 ns which scale with CdSe QDs radius as ~ R−2.155 in fairly good agreement with experimental values reported in the literature.


Spectroscopic analysis Quantum dots Photoluminescence radiative decay time 



Authors are deeply grateful to members of the Nanotechnology Lab. at the National Institute of Laser Enhanced Sciences (NILES) and the esteemed staff of the solid-state Lab. at physics department, faculty of science, Cairo University.


  1. Ayelea, D.W., Suc, W.N., Chouc, H.L., Pana, C.J., Hwanga, B.J.: Composition-controlled optical properties of colloidal CdSe quantum dots. Appl. Surf. Sci. 322, 177–184 (2014)ADSCrossRefGoogle Scholar
  2. Califano, M., Franceschetti, A., Zunger, A.: Temperature dependence of excitonic radiative decay in CdSe quantum dots: the role of surface hole traps. Nano Lett. 5(12), 2360–2364 (2005)ADSCrossRefGoogle Scholar
  3. Chukwuocha, E.O., Onyeaju, M.C.: Effect of quantum confinement on the wavelength of CdSe, ZnS And GaAs quantum dots (Qds). Int. J. Sci. Technol. Res. 1, 21–24 (2012)Google Scholar
  4. Deng, D.W., Yu, J.S., Pan, Y.: Water-soluble CdSe and CdSe/CdS nanocrystals: a greener synthetic route. J. Colloid Interface Sci. 299, 225–232 (2006)ADSCrossRefGoogle Scholar
  5. Donega, C.D.M., Hickey, S.G., Wuister, S.F., Vanmaekelbergh, D., Meijerink, A.: Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals. J. Phys. Chem. B 107, 489–496 (2003)CrossRefGoogle Scholar
  6. Eisler, H.J., Sundar, V.C., Bawendi, M.G., Walsh, M., Smith, H.I., Klimov, V.: Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 80, 4614–4616 (2002)ADSCrossRefGoogle Scholar
  7. Frecker, T., Bailey, D., Arzeta-Ferrer, X., McBride, J., Rosenthal, S.J.: Quantum dots and their application in lighting, displays, and biology. ECS J. Solid State Sci. Technol. 5, 3019–3031 (2016)CrossRefGoogle Scholar
  8. Gong, K., Zeng, Y., Kelley, D.F.: Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/CdSe nanocrystals. J. Phys. Chem. C 117, 20268–20279 (2013)CrossRefGoogle Scholar
  9. Gyori, Z., Tatrai, D., Sarlos, F., Szabo, G., Kukovecz, A., Konya, Z., Kiricsi, I.: Laser-induced fluorescence measurements on CdSe quantum dots. Process. Appl. Ceram. 4, 33–38 (2010)CrossRefGoogle Scholar
  10. Hamizi, N.A., Johan, M.R.: Optical properties of CdSe quantum dots via non-TOP based route. Int. J. Electrochem. Sci. 7, 8458–8467 (2012)Google Scholar
  11. Henderson, B., Imbusch, G.F.: Optical Spectroscopy of Inorganic Solids. Oxford University Press, Oxford (1989)Google Scholar
  12. Hoogland, S., Sukhovatkin, V., Howard, I., Cauchi, S., Levina, L., Sargent, E.H.: A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength. Opt. Express 14, 3273–3281 (2006)ADSCrossRefGoogle Scholar
  13. Huang, J., Xu, B., Yuan, C., Chen, H., Sun, J., Sun, L., Agren, H.: Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation. ACS Appl. Mater. Interfaces. 6, 18808–18815 (2014)CrossRefGoogle Scholar
  14. Jha, P.P., Sionnest, P.G.: Photoluminescence switching of charged quantum dot films. J. Phys. Chem. C 111, 15440–15445 (2007)CrossRefGoogle Scholar
  15. Kim, J.Y., Hiramatsu, H., Osterloh, F.E.: Planar polarized light emission from CdSe nanoparticle clusters. J. Am. Chem. Soc. 127, 15556–15561 (2005)CrossRefGoogle Scholar
  16. Klimov, V.I.: Nanocrystal Quantum Dots, 2nd edn. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  17. Konstantatos, G., Sargent, E.H.: Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  18. Langevin, M.A., Quirion, D.L., Ritcey, A.M., Allen, C.N.: Size-dependent extinction coefficients and transition energies of near-infrared β-Ag2Se colloidal quantum dots. J. Phys. Chem. C 117, 5424–5428 (2013)CrossRefGoogle Scholar
  19. Leatherdale, C.A., Woo, W.K., Mikulec, F.V., Bawendi, M.G.: On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002)CrossRefGoogle Scholar
  20. Li, J., Wang, L.W.: Shape effects on electronic states of nanocrystals. Nano Lett. 3, 1357–1363 (2003)ADSCrossRefGoogle Scholar
  21. Li, Z., Sun, Q., Zhu, Y., Tan, B., Xu, Z., Xue, D.S.: Ultra-small fluorescent inorganic nanoparticles for bioimaging. J. Mater. Chem. B 2, 2793–2818 (2014)CrossRefGoogle Scholar
  22. Mahajan, S., Rani, M., Dubey, R.B., Mahajan, J.: Characteristics and properties of CdSe quantum dots. Int. J. Latest Res. Sci. Technol. 2, 457–459 (2013)Google Scholar
  23. Mi, W., Tian, J., Tian, W., Dai, J., Wang, X., Liu, X.: Temperature dependent synthesis and optical properties of CdSe quantum dots. Ceram. Int. 38, 5575–5583 (2012)CrossRefGoogle Scholar
  24. Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)CrossRefGoogle Scholar
  25. Nazzal, A., Fu, H.: Comparative theoretical study of the size dependent electronic and optical properties in CdS and CdSe spherical nanocrystals. J. Comput. Theor. Nanosci. 6, 1277–1289 (2009)CrossRefGoogle Scholar
  26. Norris, D.J., Efros, A.L., Rosen, M., Bawendi, M.G.: Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. B 53, 16347–16354 (1996)ADSCrossRefGoogle Scholar
  27. Pan, D., Wang, Q., Jiang, S., Ji, L., An, L.: Low-temperature synthesis of oil-soluble CdSe, CdS, and CdSe/CdS core–shell nanocrystals by using various water-soluble anion precursors. J. Phys. Chem. C 111, 5661–5666 (2007)CrossRefGoogle Scholar
  28. Petryayeva, E., Algar, W.R., Medintz, I.L.: Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 67, 215–251 (2013)ADSCrossRefGoogle Scholar
  29. Rabani, E.: Structure and electrostatic properties of passivated CdSe nanocrystals. J. Chem. Phys. 115, 1493–1497 (2001)ADSCrossRefGoogle Scholar
  30. Rogach, A.L., Gaponik, N., Lupton, J.M., Bertoni, C., Gallardo, D.E., Dunn, S., Pira, N.L., Paderi, M., Repetto, P., Romanov, S.G.: Light‐emitting diodes with semiconductor nanocrystals. Angew. Chem. Int. Ed. 47, 6538–6549 (2008)CrossRefGoogle Scholar
  31. Schdffner, M., Bao, X., Penzkofer, A.: Principal optical constants measurement of uniaxial crystal CdSe in the wavelength region between 380 and 950 nm. Appl. Opt. 31, 4546–4552 (1992)ADSCrossRefGoogle Scholar
  32. Sole, J.G., Bausa, L.E., Jaque, D.: An Introduction to the Optical Spectroscopy of Inorganic Solids. Wiley, New York (2005)CrossRefGoogle Scholar
  33. Strekal, N.L: Size-dependent photoluminescence quantum yield of Cdse/Zns nanoparticles: Numerical simulation and experimental evidence. Nanosci. nanotechnol. 4, 16–21 (2014)Google Scholar
  34. Tauc, J.: Optical properties of amorphous semiconductor. In: Tauc, J. (ed.) Amorphous and Liquid Semiconductor. Plenum Publishing Company, New York (1973)Google Scholar
  35. Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)CrossRefGoogle Scholar
  36. Viswanatha, R., Sapra, S., Dasgupta, T.S., Sarma, D.D.: Electronic structure of and quantum size effect in III–V and II–VI semiconducting nanocrystals using a realistic tight binding approach. Phys. Rev. B 72, 045333-1–045333-10 (2005)ADSCrossRefGoogle Scholar
  37. Wang, L.W., Zunger, A.: Electronic structure pseudopotential calculations of large (.apprx. 1000 atoms) si quantum dots. J. Phys. Chem. 98, 2158–2165 (1994)CrossRefGoogle Scholar
  38. Yu, W.W., Qu, L., Guo, W., Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)CrossRefGoogle Scholar
  39. Yu, P., Beard, M.C., Ellingson, R.J., Ferrere, S., Curtis, C., Drexler, J., Luiszer, F., Nozik, A.J.: Absorption cross-section and related optical properties of colloidal InAs quantum dots. J. Phys. Chem. B 109, 7084–7087 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abdelnasser Aboulfotouh
    • 1
  • Mohamed Fikry
    • 1
    • 2
  • Mona Mohamed
    • 3
  • Magdy Omar
    • 1
  • Hossam Rady
    • 2
    • 4
  • Yahia Elbashar
    • 2
    • 5
  1. 1.Department of Physics, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Egypt Nanotechnology Center (EGNC)Cairo UniversityGizaEgypt
  3. 3.National Institute of Laser Enhanced SciencesCairo UniversityGizaEgypt
  4. 4.Institute of Nanoscience and NanoTechnologyKafrelsheikh UniversityKafrelsheikhEgypt
  5. 5.Department of Physics, Faculty of ScienceAswan UniversityAswânEgypt

Personalised recommendations