Modulation speed limits of a graphene-based modulator

  • Sheng Qu
  • Congcong Ma
  • Shulong Wang
  • Hongxia Liu
  • Lu Dong
Article
  • 38 Downloads

Abstract

Electro-optical modulators, working at near-infrared range are a key device in modern optical system. Modulation speed is an important parameter to evaluate the performance of an electro-optical modulator. However, the modulation speed which is controlled by contact resistance and quantum capacitance of a graphene-based modulator is difficult to calculate in previous numerical simulation. In this paper, we proposed a method based on a simple structure to calculate the modulation speed. The simulation results show that the modulation speed is approximate 1.2 GHz which is consistent with the experimental results. And the dependence of the modulation speed on the effective oxide thickness (EOT) and doping of graphene are investigated in our work. Meanwhile, we optimize the structure parameters of modulator to promote the modulation speed which can be increased to ~3.6 GHz. The proposed method to evaluate and optimize the modulation speed could have many applications potential for various graphene-based devices.

Keywords

Graphene Contact resistance Quantum capacitance Modulation speed 

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 61376099, 61434007 and 61504100).

Author contributions

Hongxia Liu and Shulong Wang developed the concept. Sheng Qu conceived the design. Lu Dong and Congcong Ma performed the numerical simulations. Hongxia Liu, Shulong Wang and Sheng Qu contributed to writing and finalizing the paper.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Bhattacharya, S., Mahapatra, S.: Quantum capacitance in bilayer graphene nanoribbon. Physica E 44(7–8), 1127–1131 (2012)ADSCrossRefGoogle Scholar
  2. Bonaccorso, F., Sun, Z., Hasan, T., et al.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)ADSCrossRefGoogle Scholar
  3. Du, W., Li, E.P., Hao, R.: Tunability analysis of a graphene-embedded ring modulator. Photonics Technol. Lett. IEEE 26(20), 2008–2011 (2014)ADSCrossRefGoogle Scholar
  4. Fang, T., Konar, A., Xing, H., et al.: Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109 (2007).  https://doi.org/10.1063/1.2776887 CrossRefGoogle Scholar
  5. Giovannetti, G., Khomyakov, P.A., Brocks, G., et al.: Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008).  https://doi.org/10.1103/PhysRevLett.101.026803 ADSCrossRefGoogle Scholar
  6. Gosciniak, J., Tan, D.T.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3(7451), 1897 (2013).  https://doi.org/10.1038/srep01897 ADSCrossRefGoogle Scholar
  7. Hu Y.T., Pantouvaki M., Brems S. et al.: Broadband 10 Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects. Electron Devices Meeting IEEE, 5.6.1–5.6.4 (2014)Google Scholar
  8. Ji, X., Zhang, J., Wang, Y., et al.: A theoretical model for metal-graphene contact resistance using a DFT-NEGF method. Phys. Chem. Chem. Phys. 15(41), 17883–17886 (2013)CrossRefGoogle Scholar
  9. Katsnelson, M.: Graphene: Carbon in Two Dimensions, p. 2. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  10. Kirchain, R., Kimerling, L.: A roadmap for nanophotonics. Nat. Photonics 1(6), 303–305 (2007)ADSCrossRefGoogle Scholar
  11. Kliros G. S.: Graphene Science Handbook, pp. 171–183 (2015)Google Scholar
  12. Koester, S.J., Li, M.: High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100(17), 171107 (2012).  https://doi.org/10.1063/1.4704663 ADSCrossRefGoogle Scholar
  13. Koester, S.J., Li, H., Li, M.: Switching energy limits of waveguide-coupled graphene-on-graphene optical modulators. Opt. Express 20(18), 20330–20341 (2012)ADSCrossRefGoogle Scholar
  14. Li, W., Chen, X., Wang, L., et al.: Density of states and its local fluctuations determined by capacitance of strongly disordered graphene. Sci. Rep. 3(5), 1772 (2013).  https://doi.org/10.1038/srep01772 CrossRefGoogle Scholar
  15. Liu, M., Yin, X., Ulin-Avila, E., et al.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)ADSCrossRefGoogle Scholar
  16. Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012)ADSCrossRefGoogle Scholar
  17. Midrio, M., Boscolo, S., Moresco, M., et al.: Graphene-assisted critically-coupled optical ring modulator. Opt. Express 20(21), 23144–23155 (2012)ADSCrossRefGoogle Scholar
  18. Miller, D.A.: Energy consumption in optical modulators for interconnects. Opt Exp 2(6), A293–A308 (2012)CrossRefGoogle Scholar
  19. Novoselov, K.S., Fal′Ko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490(7419), 192–200 (2010)ADSCrossRefGoogle Scholar
  20. Phare, C.T., Lee, Y.H.D., Cardenas, J., et al.: Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9(8), 511–514 (2015)ADSCrossRefGoogle Scholar
  21. Phatak, A., Cheng, Z., Qin, C., et al.: Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt. Lett. 41(11), 2501–2504 (2016)ADSCrossRefGoogle Scholar
  22. Reed, G.T., Thomson, D., Gardes, F.Y., et al.: High speed silicon optical modulators. Nat. Photonics 8(1), 40–50 (2010)Google Scholar
  23. Scher, S., Roulleau, P., Molitor, F., et al.: Quantum capacitance and density of states of graphene. Appl. Phys. Lett. 96(15), 152104–152104-3 (2010)ADSCrossRefGoogle Scholar
  24. Shin, J.S., Kim, J.S., Jin, T.K.: Graphene-based hybrid plasmonic modulator. J. Optics 17(12), 125801 (2015).  https://doi.org/10.1088/2040-8978/17/12/125801 ADSCrossRefGoogle Scholar
  25. Sun, Z., Martinez, A., Wang, F.: Optical modulators with 2D layered materials. Nat. Photonics 10(4), 227–238 (2016)ADSCrossRefGoogle Scholar
  26. Venugopal, A., Colombo, L., Vogel, E.M.: Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 96(1), 013512 (2010).  https://doi.org/10.1063/1.3290248 ADSCrossRefGoogle Scholar
  27. Wang, J., Cheng, Z., Chen, Z., et al.: High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8(27), 13206–13211 (2016)ADSCrossRefGoogle Scholar
  28. Xia, F., Perebeinos, V., Lin, Y.M., et al.: The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6(3), 179–184 (2011)ADSCrossRefGoogle Scholar
  29. Xiao, T.H., Cheng, Z., Goda, K.: Graphene-on-silicon hybrid plasmonic-photonic integrated circuits. Nanotechnology 28(24), 245201 (2017).  https://doi.org/10.1088/1361-6528/aa7128 ADSCrossRefGoogle Scholar
  30. Yang, L., Hu, T., Shen, A., et al.: Ultracompact optical modulator based on graphene-silica metamaterial. Opt. Lett. 39(7), 1909–1912 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sheng Qu
    • 1
  • Congcong Ma
    • 1
  • Shulong Wang
    • 1
  • Hongxia Liu
    • 1
  • Lu Dong
    • 1
  1. 1.Key Laboratory for Wide Band Gap Semiconductor Materials and Devices of Education, School of MicroelectronicsXidian UniversityXi’anChina

Personalised recommendations