Advertisement

Studying thermal performance of the PIN-photodiode photodetectors based on MGL and GNR

  • S. R. Hoseini
  • H. Rasooli Saghai
Article

Abstract

The novel approach proposed in the present study is to use graphene based materials in the structure of the available infrared photo detectors in order to improve their parameters. The photo detector under study is PIN photodiode photodetector with no internal gain, but a very wide wavelength. In this paper, we have shown that the graphene-based detectors can exhibit high responsivity and detectivity at elevated temperatures in a wide radiation spectrum due to high values of the quantum efficiency and relatively low rates of thermo generation which lead them to surpass other detectors substantially.

Keywords

Terahertz graphene photodetector Room temperature performance Multiple layered graphene Armchair graphene structures 

References

  1. Ahmadi, E., Asgari, A.: Theoretical calculation of optical absorption spectrum for armchair graphene nanoribbon. Proced. Eng. 8, 25–29 (2011)CrossRefGoogle Scholar
  2. Ahmadi, E., Asgari, A.: Dark current of infrared photodetectors based on armchair graphene nanoribbons. Phys. Scr. T157, 014003 (2013a)CrossRefGoogle Scholar
  3. Ahmadi, E., Asgari, A.: Carrier generation and recombination rate in armchair graphene nanoribbons. Eur. Phys. J. B 86, 19 (2013b)ADSCrossRefGoogle Scholar
  4. Ahmadi, E., Asgari, A.: Modeling of the infrared photodetector based on multi layer armchair graphene nanoribbons. J. Appl. Phys. 113, 093106 (2013c)ADSCrossRefGoogle Scholar
  5. Ahmadi, E., Asgari, A., Ahmadiniar, K.: The optical responsivity in IR-photodetector based on armchair graphene nanoribbons with p–i–n structure. Superlattices Microstruct. 52, 605–611 (2012)ADSCrossRefGoogle Scholar
  6. Cheianov, V.V., Fal’ko, V.I.: Selective transmission of Dirac electrons and ballistic magneto resistance of n–p junctions in graphene. Phys. Rev. B 74, 041403 (2006)ADSCrossRefGoogle Scholar
  7. Falkovsky, L.A., Varlamov, A.A.: Space–time dispersion of graphene conductivity. Eur. Phys. J. B 56, 281–284 (2007)ADSCrossRefGoogle Scholar
  8. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  9. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  10. Ghatei Khiabani Azar, H., Rasouli Saghai, H. (2016). Manipulating frequency-dependent diffraction, the linewidth, center frequency and coupling efficiency using periodic corrugations. Opt. Quantum Electron. 48, 464 (2016)CrossRefGoogle Scholar
  11. Kuzmenko, A.B., Van Heumen, E., Carbone, F., Van Der Marel, D.: Universal infrared conductance of graphite. Phys. Rev. Lett. 100(11), 117401 (2008). arXiv:0712.0835. Bibcode: 2008PhRvL.100k7401K. doi:  10.1103/PhysRevLett.100.117401. PMID 18517825
  12. Luo, H., Liu, H.C., Song, C.Y., Wasilevskim, Z.R.: Background-limited terahertz quantum-well photodetector. Appl. Phys. Lett. 86, 231103–231105 (2005)ADSCrossRefGoogle Scholar
  13. Mohamadpour, H., Asgari, A.: Graphene nanoribbon tunneling field effect transistors. Phys. E 46, 270–273 (2012)CrossRefGoogle Scholar
  14. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  15. Ossipov, A., Titov, M., Beenakker, C.W.J.: Reentrance effect in a graphene n–p–n junction coupled to a superconductor. Phys. Rev. B 75, 251401 (2007)CrossRefGoogle Scholar
  16. Rana, F., George, P.A., Strait, J.H., Shivaraman, S., Chanrashekhar, M., Spencer, M.G.: Carrier recombination and generation rates for intravalley and intervalley phonon scattering in grapheme. Phys. Rev. B 79, 115447 (2009)ADSCrossRefGoogle Scholar
  17. Rogalski, A.: Infrared Detectors. Taylor & Francis Group, CRC Press, USA (2010)Google Scholar
  18. Rogalski, A., Antoszewski, J., Faraone, L.: Third generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009)ADSCrossRefGoogle Scholar
  19. Rose, A.: Concepts in Photoconductivity and Allied Problems. Wiley, New York (1963)Google Scholar
  20. Ryzhii, V., Mitin, V., Ryzhii, M., Ryabova, N., Otsuji, T.: Device model for graphene nanoribbon phototransistor. Appl. Phys. Express 1, 063002 (2008)ADSCrossRefGoogle Scholar
  21. Ryzhii, M., Ryzhii, V., Mitin, V., Otsuji, T., Shur, M.S.: Electrically induced n–i–p junctions in multiple graphene layer structures. Phys. Rev. B 82, 075419 (2010)ADSCrossRefGoogle Scholar
  22. Ryzhii, M., Otsuji, T., Mitin, V., Ryzhii, V.: Characteristics of p–i–n terahertz and infrared photodiodes based on multiple graphene layer structures. Jpn. J. Appl. Phys. 50, 070117 (2011a)ADSCrossRefGoogle Scholar
  23. Ryzhii, V., Ryzhi, M., Ryabova, N., Mitin, V., Otsuji, T.: Terahertz and infrared detectors based on graphene structures. J. Infrared Phys. Technol. 54, 302–305 (2011b)ADSCrossRefGoogle Scholar
  24. Ryzhii, V., Ryabova, N., Ryzhii, M., Baryshnikov, N.V., Karasik, V.E., Mitin, V., Otsuji, T.: Terahertz and infrared photodetectors based on multiple graphene and nanoribbon structures. Opto Electron. Rev. 20(1), 15–25 (2012)ADSCrossRefGoogle Scholar
  25. Ryzhii, V., Otsuji, T., Aleshkin, V.Y., Dubinov, A.A., Ryzhii, M., Mitin, V., Shur, M.S.: Voltage-tunable terahertz and infrared photodetectors based on double-graphene-structures. Appl. Phys. Lett. 104, 163505 (2014)ADSCrossRefGoogle Scholar
  26. Vasko, F.T., Kuznetsov, A.V.: Electronic States and Optical Transitions in Semiconductor Heterostructures. Sprin ger, New York (1998)MATHGoogle Scholar
  27. Xia, F., Murller, T., Lin, Y.M., Valdes Garsia, A., Avouris, F.: Ultrafast graphene photodetector. Nat. Nanotech. 4, 839–843 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations