The effects of the intense laser field on the optical properties of the asymmetric parabolic quantum well



We have calculated the effects of the intense laser field on the total optical absorption coefficient (the linear and third-order nonlinear) for transition between two lower-lying electronic levels in the asymmetric parabolic \({\text{GaAs/ Ga}}_{{ 1 {\text{ - x}}}} {\text{Al}}_{\text{x}} {\text{As}}\) quantum well. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two electronic states was calculated by using density matrix formalism and the perturbation expansion method. Our results show that the effects of intense laser field and the well dimensions on the optical transitions are more pronounced. If well center is changed to be \({\text{L}}_{\text{c}} < 0 \, ({\text{L}}_{\text{c}} > 0)\), effective well width decreases (increases) and thus we can obtain the red or blue shift in the peak position of the absorption coefficient by changing the intensities of the non-resonant intense laser field as well as dimensions of the well.


Asymmetric parabolic quantum well Intense laser field Optical transitions 



The authors are grateful to The Scientific Research Project Fund of Cumhuriyet University (CUBAP) under the project number F-470.


  1. Ahn, D., Chuang, S.L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron. 23, 2196–2204 (1987)ADSCrossRefGoogle Scholar
  2. Binder, E., Kuhn, T., Mahler, G.: Coherent intraband and interband dynamics in double quantum wells: exciton and free-carrier effects. Phys. Rev. B 50, 18319–18329 (1994)ADSCrossRefGoogle Scholar
  3. Bouchard, A.M., Luban, M.: Semiconductor superlattices as terahertz generators. Phys. Rev. B 47, 6815–6817 (1993)ADSCrossRefGoogle Scholar
  4. Boyd, R.W.: Nonlinear Optics. Academic Press, London (2007)Google Scholar
  5. Burileanu, L.M., Niculescu, E.C., Esanu, N., Radu, A.: Polarizabilities of shallow donors in inverse V-shaped quantum wells under laser field. Physica E 41, 856–860 (2009)ADSCrossRefGoogle Scholar
  6. Cen, J., Lee, S.M., Bajaj, K.K.: Effects of electric and magnetic fields on confined donor states in a coupled double quantum well. J. Appl. Phys. 73, 2848–2853 (1993)ADSCrossRefGoogle Scholar
  7. Diniz Neto, O.O., Qu, F.: Effects of an intense laser field radiation on the optical properties of semiconductor quantum wells. Superlattices Microstruct. 35, 1–8 (2004)ADSCrossRefGoogle Scholar
  8. Eseanu, N.: Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells. Phys. Lett. A 374, 1278–1285 (2010)ADSCrossRefMATHGoogle Scholar
  9. Gerck, E., Miranda, L.C.M.: Quantum well lasers tunable by long wavelength radiation. Appl. Phys. Lett. 44, 837–839 (1984)ADSCrossRefGoogle Scholar
  10. Hernandez-Cabrera, A., Ramos, A.: Valence-band mixing effects on exciton dipole terahertz emission from asymmetric triple quantum wells. J. Appl. Phys. 80, 1547–1552 (1996)ADSCrossRefGoogle Scholar
  11. Hernandez-Cabrera, A., Aceituno, P., Cruz, H.: Possibility of terahertz emission with a time-dependent amplitude in semiconductor quantum wells. Phys. Rev. B 50, 8878–8881 (1994)ADSCrossRefGoogle Scholar
  12. Karabulut, I., Baskoutas, S.: Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512–073517 (2008)ADSCrossRefGoogle Scholar
  13. Karabulut, I., Atav, U., Safak, H., Tomak, M.: Linear and nonlinear intersubband optical absorptions in an asymmetric rectangular quantum well. Eur. Phys. J. B 55, 283 (2007)ADSCrossRefGoogle Scholar
  14. Kasapoglu, E., Ungan, F., Duque, C.A., Yesilgul, U., Mora-Ramos, M.E., Sari, H., Sökmen, I.: The effects of the electric and magnetic fields on the nonlinear optical properties in the step-like asymmetric quantum well. Physica E 61, 107–110 (2014)ADSCrossRefGoogle Scholar
  15. Kasapoglu, E., Duque, C.A., Mora-Ramos, M.E., Restrepo, R.L., Ungan, F., Yesilgul, U., Sari, H., Sökmen, I.: Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well. Mater. Chem. Phys. 154, 170–175 (2015)CrossRefGoogle Scholar
  16. Kasapoglu, E., Sakiroglu, S., Sökmen, I., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A.: ’The effects of the electric and intense laser field on the binding energies of donor impurity states (1 s and 2p ±) and optical absorption between the related states in an asymmetric parabolic quantum well’. Opt. Mat. 60, 318–323 (2016)CrossRefGoogle Scholar
  17. Kuhn, K.J., Lyengar, G.U., Yee, S.: Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells. J. Appl. Phys. 70, 5010–5017 (1991)ADSCrossRefGoogle Scholar
  18. Lima, F.M.S., Amato, M.A., Nunes, O.A.C., Fonseca, A.L.A., Enders, B.G., da Silva, E.F.: Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. J. Appl. Phys. 105, 123111–123117 (2009)ADSCrossRefGoogle Scholar
  19. Lyngnes, O., Berger, J.D., Prineas, J.P., Park, S., Khigrova, G., Jahnke, F., Gibbs, H.M., Kira, M., Koch, S.W.: Nonlinear emission dynamics from semiconductor microcavities in the nonperturbative regime. Solid State Commun. 104, 297–300 (1997)ADSCrossRefGoogle Scholar
  20. Miranda, L.C.M.: Energy-gap distortion in solids under intense laser field. Solid State Commun. 45, 783–785 (1983)ADSCrossRefGoogle Scholar
  21. Nunes, O.A.C.: Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field. J. Appl. Phys. 58, 2102–2104 (1985)ADSCrossRefGoogle Scholar
  22. Nuss, M.C., Planken, P.C.M., Brener, I., Roskos, H.G., Luo, M.S.C., Chuang, S.L.: Terahertz electromagnetic radiation from quantum wells. Appl. Phys. B 58, 249–259 (1994)ADSCrossRefGoogle Scholar
  23. Ozturk, E.: ’Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field’. Eur. Phys. J. Plus 130, 237–246 (2015)CrossRefGoogle Scholar
  24. Ozturk, E.: Nonlinear intersubband transitions in asymmetric double quantum wells as dependent on intense laser field. Opt. Quantum Electron. 48, 269–282 (2016)CrossRefGoogle Scholar
  25. Perez Maldonado, M.T., Rodriguez-Castellanos, C., Sanchez-Gacita, M.: Electron quasi-energies in a quantum well under magnetic field and laser radiation. Phys Stat. Sol. (b) 232, 130–133 (2002)ADSCrossRefGoogle Scholar
  26. Peyhambarian, N., Koch, S.W., Lindberg, M., Fluegel, B., Joffre, M.: Dynamic stark effect of exciton and continuum states in CdS. Phys. Rev. Lett. 62, 1185–1188 (1989)ADSCrossRefGoogle Scholar
  27. Quochi, F., Bongiovanni, G., Mura, A., Staehli, J.L., Deveaud, B., Stanley, R.P., Oesterle, U., Houdre, R.: Strongly driven semiconductor microcavities: from the polarition doublet to an ac stark triplet. Phys. Rev. Lett. 80, 4733–4736 (1998)ADSCrossRefGoogle Scholar
  28. Quochi, F., Ciuti, C., Bongiovanni, G., Mura, A., Saba, M., Oesterle, U., Depertuis, M.A., Staehli, J.L., Deveaud, B.: Strong coherent gain from semiconductor microcavities in the regime of excitonic saturation. Phys. Rev. B 59, R15594–R15597 (1999)ADSCrossRefGoogle Scholar
  29. Radu, A., Niculescu, E.C., Cristea, M.J.: Laser dressing effects on the energy spectra in different shaped quantum wells under an applied electric field’. J. Optoelectron. Adv. Mater. 10, 2555–2563 (2008)Google Scholar
  30. Raichev, O.E.: Charge oscillations in double quantum wells: nonlinear effects caused by Coulomb interaction. Phys. Rev. B 51, 17713–17717 (1995)ADSCrossRefGoogle Scholar
  31. Rezaei, G., Kish, S.S.: Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: effects of hydrostatic pressure, external electric and magnetic fields. Superlattices Microstruct. 53, 99–112 (2013)ADSCrossRefGoogle Scholar
  32. Rosencher, E., Bois, P.: Model system for optical nonlinearities: asymmetric quantum wells. Phys. Rev. B 44, 11315–11327 (1991)ADSCrossRefGoogle Scholar
  33. Shao, S., Guo, K.X., Zhang, Z.H., Li, N., Peng, C.: Third-harmonic generation in cylindrical quantum dots in a static magnetic field. Solid State Commun. 151, 289–292 (2011)ADSCrossRefGoogle Scholar
  34. Sihua, H., Shiliang, B., Jun, Z.: Binding energies of shallow impurities in asymmetric strained wurtzite AlxGa1−xN/GaN/AlyGa1−yN quantum wells. J. Semicon. 32, 042001–042005 (2011)CrossRefGoogle Scholar
  35. Susa, N.: Improvement in electroabsorption and the effects of parameter variations in the three-step asymmetric coupled quantum well. J. Appl. Phys. 73, 932–942 (1993)ADSCrossRefGoogle Scholar
  36. Ungan, F., Yesilgul, U., Sakiroglu, S., Kasapoglu, E., Sari, H., Sökmen, I.: Effects of an intense, high-frequency laser field on the intersubband transitions and impurity binding energy in semiconductor quantum wells. Phys. Lett. A 374, 2980–2984 (2010)ADSCrossRefMATHGoogle Scholar
  37. Ungan, F., Kasapoglu, E., Sökmen, I.: Intersubband optical absorption coefficients and refractive index changes in modulation-doped asymmetric double quantum well. Solid State Commun. 151, 1415–1419 (2011)ADSCrossRefGoogle Scholar
  38. Vahdani, M.R.K., Rezaei, G.: Intersubband optical absorption coefficients and refractive index changes in a parabolic cylinder quantum dot. Phys. Lett. A 374, 637–643 (2010)ADSCrossRefMATHGoogle Scholar
  39. Varshni, Y.P.: Effect of an intense laser field on donor impurities in spherical quantum dots. Superlattices Microstruct. 30, 45–52 (2001)ADSCrossRefGoogle Scholar
  40. Yıldırım, H., Tomak, M.: Intensity-dependent refractive index of a Pöschl-Teller quantum well. J. Appl. Phys. 99, 093103–093107 (2006)ADSCrossRefGoogle Scholar
  41. Zhang, C., Wang, Z., Liu, Y., Guo, K.: Binding energy of shallow donor impurity in asymmetric quantum wells. Physica E 43, 372–374 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceCumhuriyet UniversitySivasTurkey
  2. 2.Department of Optical Engineering, Faculty of TechnologyCumhuriyet UniversitySivasTurkey

Personalised recommendations