Synthesis and characterization of platinum nano sized particles by laser ablation in C2H6O2 solution

  • Samira Moniri
  • Mohammad Reza Hantehzadeh
  • Mahmood Ghoranneviss
  • Mohsen Asadi Asadabad


Platinum nano sized particles (Pt NPs) are superior catalysts for many intentions, such as glucose sensors, cancer therapy, gas sensors, etc. Here, Pt NPs were produced by pulsed laser ablation in C2H6O2 solution using Q-switched Nd:YAG laser, for the first time. Then, the influence of the laser fluence during synthesis of them was investigated; and they were characterized by UV–vis spectroscopy, TEM, FE-SEM, XRD, FT-IR, and Raman spectroscopy. The results showed that with increasing laser fluence, the mean particle size of the spherical NPs enhanced. Meanwhile, they had a polycrystalline cubic structure. Correspondingly, the plasmon peak position of generated NPs in the absorption spectra shifted from 257 to 266 nm, with a rise of laser fluence. The IR and Raman spectroscopy was used to achieve the information about the surface state of Pt NPs. We propose that the optimum adjusted laser fluence is an important factor to increase the ablation efficiency.


Platinum nanoparticles Laser fluence Ethylene glycol Laser ablation 


  1. Abdelsalam, M.E., Mahajan, S., Bartlett, P.N., Baumberg, J.J., Russell, A.E.: SERS at structured palladium and platinum surfaces. J. Am. Chem. Soc. 129, 7399–7406 (2007)CrossRefGoogle Scholar
  2. Agarwala, P., Agarwala, V., Garg, R.: Effect of different organic solvents and annealing temperatures on optical property of TiO2 nanoparticles. Int. J. Tech. Res. Appl. 2, 61–64 (2014)Google Scholar
  3. Amendola, V., Meneghetti, M.: What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046 (2013)CrossRefGoogle Scholar
  4. Bigall, N.C., Härtling, T., Klose, M., Simon, P., Eng, L.M., Eychmüller, A.: Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett. 8, 4588–4592 (2008)ADSCrossRefGoogle Scholar
  5. Binh, N.T., Thanh, N.D., Dong, N.Q., Trinh, N.T.: Preparation of platinum nanoparticles in solution of polyvinyl pyrrolydone (PVP) by laser ablation method. VNU J. Sci. Math. Phys. 30, 18 (2014)Google Scholar
  6. Castillo Rodriguez, G.A., Guillen, G.G., Mendivil Palma, M.I., Das Roy, A.M., Guzman-Hernandez, T.K.: Synthesis and characterization of hercynite nanoparticles by pulsed laser ablation in liquid technique. Int. J. Appl. Ceram. Technol. 12, E34–E43 (2015)CrossRefGoogle Scholar
  7. Chakravadhanula, V.S.K., Mishra, Y.K., Kotnur, V.G., Avasthi, D.K., Strunskus, T., Zaporotchenko, V., et al.: Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation. Beilstein J. Nanotechnol. 5, 1419–1431 (2014)CrossRefGoogle Scholar
  8. Coates, J.: Interpretation of Infrared Spectra, a Practical Approach. Encyclopedia of Analytical Chemistry, p. 10815. Wiley, Chichester (2000)Google Scholar
  9. Cristoforetti, G., Pitzalis, E., Spiniello, R., Ishak, R., Muniz-Miranda, M.: Production of palladium nanoparticles by pulsed laser ablation in water and their characterization. J. Phys. Chem. C 115, 5073–5083 (2011)CrossRefGoogle Scholar
  10. Cueto, M., Sanz, M., Oujja, M., Gámez, F., Martínez-Haya, B., Castillejo, M.: Platinum nanoparticles prepared by laser ablation in aqueous solutions: fabrication and application to laser desorption ionization. J. Phys. Chem. C 115, 22217–22224 (2011)CrossRefGoogle Scholar
  11. Dablemont, C., Lang, P., Mangeney, C., Piquemal, J.Y., Petkov, V., Herbst, F., et al.: FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24, 5832–5841 (2008)CrossRefGoogle Scholar
  12. Dana, D., Mayo, W., Miller, F.A., Hannah, R.W.: Course Notes on the Interpretation of Infrared and Raman Spectra. Wiley, Hoboken (2003)Google Scholar
  13. Díaz, C., Valenzuela, M.L., Baez, R., Segovia, M.: Solid state morphology and size tuning of nanostructured platinum using macromolecular complexes. J. Chil. Chem. Soc. 60, 2716–2720 (2015)CrossRefGoogle Scholar
  14. Dolgaev, S.I., Simakin, A.V., Voronov, V.V., Shafeev, G.A., Bozon-Verduraz, F.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A 79, 1127–1132 (2004)ADSCrossRefGoogle Scholar
  15. Dung Dang, T.M., Thu Le, T.T., Fribourg Blanc, E., Chien Dang, M.: Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotech. 2, 15009–15012 (2011)CrossRefGoogle Scholar
  16. Eslamifar, M.: Hyper-rayleigh scattering and surface-enhanced Raman scattering studies of platinum nanoparticle suspensions. Int. J. Res. Rev. Appl. Sci. 19, 1–5 (2014a)Google Scholar
  17. Eslamifar, M.: Comparison of the nonlinear optical properties of platinum nanoparticles in both pulsed and continuous regime.  Int. J. Res. Rev. Appl. Sci. 21, 82–87 (2014b)Google Scholar
  18. Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2005)CrossRefGoogle Scholar
  19. Feng Li, J., Fan Huang, Y., Ding, Y., Lin Yang, Z., Bo Li, S., Shun Zhou, X., et al.: Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010)ADSCrossRefGoogle Scholar
  20. Frederix, F., Friedt, J.M., Choi, K.H., Laureyn, W., Campitelli, A., Mondelaers, D., et al.: Biosensing based on light absorption of nanoscaled gold and silver particles. Anal. Chem. 75, 6894–6900 (2003)CrossRefGoogle Scholar
  21. Galindo, R.B., Rodriguez, P.Y.R., Urbina, B.A.P., Orta, C.A.A., Fernandez, O.S.R., Pliego, G.C., et al.: Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. J. Nanomater. 2014, 1–5 (2014)CrossRefGoogle Scholar
  22. Gharibshahi, E., Saion, E.: Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int. J. Mol. Sci. 13, 14723–14741 (2012)CrossRefGoogle Scholar
  23. Golightly, J.S., Castleman, A.W.J.: Analysis of titanium nanoparticles created by laser irradiation under liquid environments. J. Phys. Chem. B. 110, 19979–19984 (2006)CrossRefGoogle Scholar
  24. Gómez, R., Pérez, J.M., Solla-Gullón, J., Montiel, V., Aldaz, A.: In situ surface enhanced Raman spectroscopy on electrodes with platinum and palladium nanoparticle ensembles. J. Phys. Chem. B. 108, 9943–9949 (2004)CrossRefGoogle Scholar
  25. Gómez, R., Solla-Gullón, J., Pérez, J.M., Aldaz, A.: Nanoparticles‐on‐electrode approach for in situ surface‐enhanced Raman spectroscopy studies with platinum‐group metals: examples and prospects. J. Raman Spectrosc. 36, 613–622 (2005)ADSCrossRefGoogle Scholar
  26. Henrist, C., Traina, K., Hubert, C., Toussaint, G., Rulmont, A., Cloots, R.: Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis. J. Cryst. Grow. 254, 176–187 (2003)ADSCrossRefGoogle Scholar
  27. Henzie, J., Lee, J., Lee, M.H., Hasan, W., Odom, T.W.: Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60, 147–165 (2009)ADSCrossRefGoogle Scholar
  28. Karthik, A.D., Geetha, K.: Synthesis of copper precursor, copper and its oxide nanoparticles by green chemical reduction method and its antimicrobial activity. J. Appl. Pharmac. Sci. 3, 016–021 (2013)Google Scholar
  29. Khalef, W.K.: Preparation and characterization of TeO2 nanoparticles by pulsed laser ablation in water. J. Eng. Technol. 32, 396–405 (2013)Google Scholar
  30. Kim, N.H., Kim, K.: Adsorption characteristics of arylisocyanide on Au and Pt electrode surfaces: surface-enhanced Raman scattering study. J. Phys. Chem. B. 110, 1837–1842 (2006)CrossRefGoogle Scholar
  31. Krishnan, K., Krishnan, R.S. (1966) Raman and infrared spectra of ethylene glycol. In: Proceedings of the indian academy of sciences-section A, vol. 64, No. 2, p. 111.Google Scholar
  32. Liu, P., Cui, H., Wang, C.X., Yang, G.W.: From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. Phys. Chem. Chem. Phys. 12, 3942–3952 (2010)CrossRefGoogle Scholar
  33. Long, N.V., Ohtaki, M., Uchida, M., et al.: Synthesis and characterization of polyhedral Pt nanoparticles: their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid. Interf. Sci. 359, 339–350 (2011)CrossRefGoogle Scholar
  34. Mafune, F., Kondow, T.: Selective laser fabrication of small nanoparticles and nano-networks in solution by irradiation of UV pulsed laser onto platinum nanoparticles. Chem. Phys. Lett. 383, 343–347 (2004)ADSCrossRefGoogle Scholar
  35. Mafune, F., Kohno, J., Takeda, Y., Kondow, T.: Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B. 104, 9111–9117 (2000)CrossRefGoogle Scholar
  36. Mafune, F., Kohno, J., Takeda, Y., Kondow, T.: Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B. 107, 4218–4223 (2003)CrossRefGoogle Scholar
  37. Mahdieh, M.H., Fattahi, B.: Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence. Appl. Surf. Sci. 329, 47–57 (2014)ADSCrossRefGoogle Scholar
  38. Mauricio Aguirre, J., Gutiérrez, A., Giraldo, O.: Simple route for the synthesis of copper hydroxy salts. J. Braz. Chem. Soc. 22, 546–551 (2011)CrossRefGoogle Scholar
  39. Mendivil, M.I., Krishnan, B., Castillo, G.A., Shaji, S.: Synthesis and properties of palladium nanoparticles by pulsed laser ablation in liquid. Appl. Surf. Sci. 348, 45–53 (2015)CrossRefGoogle Scholar
  40. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908)CrossRefMATHGoogle Scholar
  41. Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mat. Chem. 14, 2161–2175 (2004)CrossRefGoogle Scholar
  42. Mortazavi, S.Z., Parvin, P., Reyhani, A., Nozad-Golikand, A., Mirershadi, S.: Effect of laser wavelength at IR (1064 nm) and UV (193 nm) on the structural formation of palladium nanoparticles in deionized water. J. Phys. Chem. C 115, 5049–5057 (2011)CrossRefGoogle Scholar
  43. Mrozek, M.F., Xie, Y., Weaver, M.J.: Surface-enhanced Raman scattering on uniform platinum-group overlayers: preparation by redox replacement of underpotential-deposited metals on gold. Anal. Chem. 73, 5953–5960 (2001)CrossRefGoogle Scholar
  44. Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York (2006)CrossRefGoogle Scholar
  45. Ndana, M., Grace, J.J., Baba, F.H., Mohammed, U.M.: Fourier transform infrared spectrophotometric analysis of functional groups in biodiesel produced from oils of ricinus communis, hevea brasiliensis and jatropha curcas seeds. Int. J. Sci. Environ. Technol. 2, 1116–1121 (2013)Google Scholar
  46. Nguyen, T.B., Nguyen, T.D.: Preparation of platinum nanoparticles in liquids by laser ablation method. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 035011(1)–035011(5) (2014)Google Scholar
  47. Nguyen, B.T., Nguyen, T.D., Nguyen, D.Q., Nguyen, T.T.: Preparation of platinum nanoparticles in solution of polyvinyl pyrrolydone (PVP) by laser ablation method. J. Sci. Math. Phys. 30, 18–24 (2014)Google Scholar
  48. Nichols, W.T., Sasaki, T., Koshizaki, N.: Laser ablation of a platinum target in water. III. Laser-induced reactions. J. Appl. Phys. 100, 114911 (2006)ADSCrossRefGoogle Scholar
  49. Palma, M.I.M., Krishnan, B., Rodriguez, G.A.C., Das Roy, T.K., Avellaneda, D.A., Shaji, S.: Synthesis and properties of platinum nanoparticles by pulsed laser ablation in liquid. J. Nanomater. 18, 1 (2016)CrossRefGoogle Scholar
  50. Patel, K., Kapoor, S., Purshottam-Dave, D., Mukherjee, T.: Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method. J. Chem. Sci. 117, 311–316 (2005)CrossRefGoogle Scholar
  51. Petroski, J., El-Sayed, M.A.: FTIR study of the adsorption of the capping material to different platinum nanoparticle shapes. J. Phys. Chem. A 107, 8371–8375 (2003)CrossRefGoogle Scholar
  52. Petrov, T., Markova-Deneva, I., Chauvet, O., Nikolov, R., Denev, I.: SEM an d FT-IR spectroscopy study of Cu, Sn and Cu-Sn nanoparticles. J. Uni. Chem. Tech. Metal. 47, 197–206 (2012)Google Scholar
  53. Piriyawong, V., Thongpool, V., Asanithi, P., Limsuwan, P.: Effect of laser pulse energy on the formation of alumina nanoparticles synthesized by laser ablation in water. Procedia Eng. 32, 1107–1112 (2012)CrossRefGoogle Scholar
  54. Pramila-Devamani, R.H., Sivakami, S.: Synthesis and characterization of copper chromate nanoparticles. Weekly Sci. Res. J. 1, 1–10 (2014)Google Scholar
  55. Qin, X., Miao, Z., Wang, X., Fang, Y., Zhang, D., Chen, Q., Shao, X.: Synthesis of platinum nanoparticles stabilized in polyvinyl alcohol and their electrocatalytic propertiesb. Anal. Bioanal. Electrochem. 3, 393–405 (2011)Google Scholar
  56. Rao, S.V., Podagatlapalli, G.K., Hamad, S.: Ultrafast laser ablation in liquids for nanomaterials and applications. J. Nanosci. Nanotechnol. 14, 1364–1388 (2014)CrossRefGoogle Scholar
  57. Sawodny, W., Niedenzu, K., Dawson, J.W.: The vibrational spectrum of ethylene glycol. Spectrochim. Acta 23A, 799–806 (1967)ADSCrossRefGoogle Scholar
  58. Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectrometric Identification of Organic Compounds. Wiley, New York (2005)Google Scholar
  59. Simakin, A.V., Voronov, V.V., Shafeev, G.A., Brayner, R., Bozon-Verduraz, F.: Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem. Phys. Let. 348, 182–186 (2001)ADSCrossRefGoogle Scholar
  60. Smith, B.: Infrared Spectral Interpretation. CRC Press, Boca Raton (1999)Google Scholar
  61. Socrates, G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Wiley, Chichester (2001)Google Scholar
  62. Song, J.Y., Kwon, E.Y., Kim, B.S.: Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst. Eng. 33, 159 (2010)CrossRefGoogle Scholar
  63. Stepanov, A.L., Golubev, A.N., Nikitin, S.I., Osin, Y.N.: A review on the fabrication and properties of platinum nanoparticles. Rev. Adv. Mater. Sci. 38, 160–175 (2014)Google Scholar
  64. Stuart, B.H.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Chichester (2004)CrossRefGoogle Scholar
  65. Suffren, Y., Rollet, F.G., Reber, C.: Raman spectroscopy of transition metal complexes: molecular vibrational frequencies, phase transitions, isomers, and electronic structure. Comment Inorg. Chem. 32, 246–276 (2011)CrossRefGoogle Scholar
  66. Suresh, Y., Annapuma, S., Bhikshamaiah, G., Singh, A. K.: Int. Conf. Adv. Nanomater. Emerg. Eng. Technol. (2013), 63Google Scholar
  67. Suresh, Y., Annapurna, S., Singh, A.K., Bhikshamaiah, G.: Green synthesis and characterization of tea decoction stabilized copper nanoparticles. Int. J. Innov. Res. Sci. Eng. Technol. 3, 11265–11270 (2014)Google Scholar
  68. Sylvestre, J.P., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.T.: Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J. Am. Chem. Soc. 126, 7176–7177 (2004)CrossRefGoogle Scholar
  69. Tian, Z.Q., Ren, B., Mao, B.W.: Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J. Phys. Chem. B. 101, 1338–1346 (1997)CrossRefGoogle Scholar
  70. Ungula, J., Dejene, B. F.: Physica B Condens. Mater. Phys. (2015), 1Google Scholar
  71. UV/VIS/IR Spectroscopy Analysis of Nanoparticles:Nano Composix, San Diego (2012)Google Scholar
  72. Van Overschelde, O., Guisbiers, G., Snyders, R.: Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. Appl. Mater. 1, 042114 (2013)ADSCrossRefGoogle Scholar
  73. Vieira, L., Schennach, R., Gollas, B.: In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Phys. Chem. Chem. Phys. 17, 12870–12880 (2015)CrossRefGoogle Scholar
  74. Wang, A., Han, J., Guo, L., Yu, J., Zeng, P.: Database of standard Raman spectra of minerals and related inorganic crystals. Appl. Spect. 48, 959–968 (1994)ADSCrossRefGoogle Scholar
  75. Werner, D., Hashimoto, S., Tomita, T., Matsuo, S., Makita, Y.: Examination of silver nanoparticle fabrication by pulsed-laser ablation of flakes in primary alcohols. J. Phys. Chem. C 112, 1321–1329 (2008)CrossRefGoogle Scholar
  76. Xu, B., Song, R.G., Tang, P.H., Wang, J., Chai, G.Z., Zhang, Y.Z., Ye, Z.Z.: Preparation of Ag nanoparticles colloid by pulsed laser ablation in distilled water. Key Eng. Mater. 373, 346–349 (2008)CrossRefGoogle Scholar
  77. Yan, Z., Bao, R., Chrisey, D.B.: Excimer laser ablation of a Pt target in water: the observation of hollow particles. Nanotechnology 21, 145609 (2010)ADSCrossRefGoogle Scholar
  78. Zeng, H., Du, X.W., Singh, S.C., Kulinich, S.A., Yang, S., He, J., et al.: Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22, 1333–1353 (2012)CrossRefGoogle Scholar
  79. Zhou, M., Chen, S., Ren, H., Wu, L., Zhao, S.: RETRACTED: Electrochemical formation of platinum nanoparticles by a novel rotating cathode method. Physica E 27, 341–350 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Samira Moniri
    • 1
  • Mohammad Reza Hantehzadeh
    • 1
  • Mahmood Ghoranneviss
    • 1
  • Mohsen Asadi Asadabad
    • 2
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Materials Research SchoolNSTRIIsfahanIran

Personalised recommendations