Effect of deposition time on structural and physical properties of Cu2CdSnS4 thin films prepared by spray pyrolysis technique: experimental and ab initio study



Cu2CdSnS4 (CCdTS) thin films were synthesized using chemical spray pyrolysis deposition technique. The effect of various deposition times (20, 40, 60 min) on growth of these films was investigated. The as-synthesized Cu2CdSnS4 thin films were characterized by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, Raman spectroscopy and Hall Effect measurements. The XRD pattern of Cu2CdSnS4 structured in stannite phase with preferential orientations along (112) planes. Raman spectrum revealed very strong peak at about 333 cm−1. The films have the direct optical band gaps of 1.39–1.5 eV. The optimum hole mobility was found to be 3.212 × 101 cm2 v−1 s−1 for the film deposited on 60 min. The electronic structure and optical properties of the stannite structure Cu2CdSnS4 were obtained by ab initio calculations using the Korringa–Kohn–Rostoker method combined with the Coherent Potential Approximation (CPA), as well as CPA confirms our results.


Cu2CdSnS4 Thin films Spray pyrolysis Optical properties Hall effect Deposition times Ab-initio calculations 


  1. Ahmed, S., Reuter, K.B., Gunawan, O., Guo, L., Romankiw, L.T., Deligianni, H.: A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253–259 (2012)CrossRefGoogle Scholar
  2. Akai, H.: Fast Korringa–Kohn–Rostoker coherent potential approximation and its application to FCC Ni–Fe systems. J. Phys.: Condens. Matter 1, 8045–8063 (1989)ADSGoogle Scholar
  3. Cao, M., Li, L., Fan, W.Z., Liu, X.Y., Sun, Y., Shen, Y.: Quaternary Cu2CdSnS4 nanoparticles synthesized by a simple solvothermal method. Chem. Phys. Lett. 534, 34–37 (2012a)ADSCrossRefGoogle Scholar
  4. Cao, Y.Y., Denny, M.S., Caspar, J.V., Farneth, W.E., Guo, Q.J., Ionkin, A.S., Johnson, L.K., Lu, M.J., Malajovich, I., Radu, D., Rosenfeld, H.D., Choudhury, K.R., Wu, W.: High-efficiency solution-processed Cu2ZnSn(S, Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134, 15644–15647 (2012b)CrossRefGoogle Scholar
  5. Carrete, A., Shavel, A., Fontane, X., Montserrat, J., Fan, J.D., Ibanez, M., Saucedo, E., Rodriguez, A.P., Cabot, A.: Antimony-based ligand exchange to promote crystallization in spray-deposited Cu2ZnSnSe4 solar cells. J. Am. Chem. Soc. 135, 15982–15985 (2013)CrossRefGoogle Scholar
  6. Chen, S., Gong, X.G., Walsh, A., Wei, S.H.: Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys. Rev. B. 79, 165211–165220 (2009)ADSCrossRefGoogle Scholar
  7. Cui, Y., Wang, G., Pan, D.C.: Synthesis and photoresponse of novel Cu2CdSnS4 semiconductor nanorods. J. Mater. Chem. 22, 12471–12473 (2012)CrossRefGoogle Scholar
  8. Daranfed, W., Aida, M.S., Attaf, N., Bougdira, J., Rinnert, H.: Cu2ZnSnS4 thin films deposition by ultrasonic spray pyrolysis. J. Alloys Compd. 542, 22–27 (2012)CrossRefGoogle Scholar
  9. Eckertova, L.: Physics of Thin Films. Springer, Berlin (2012)Google Scholar
  10. Fan, F.J., Yu, B., Wang, Y.X., Zhu, Y.L., Liu, X.J., Yu, S.H., Ren, Z.F.: Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. J. Am. Chem. Soc. 133, 15910–15913 (2011)CrossRefGoogle Scholar
  11. Fernandes, P.A., Salome, P.M.P., Cunha, F.D.: A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D: Appl. Phys. 43, 215403–215413 (2010)ADSCrossRefGoogle Scholar
  12. Gardiner, D.J.: Introduction to Raman Scattering Practical Raman Spectroscopy, pp. 1–12. Springer, Berlin (1989)CrossRefGoogle Scholar
  13. Guo, H., Li, Y., Fang, X., Zhang, K., Ding, J., Yuan, N.: Co-sputtering deposition and optical–electrical characteristic of Cu2CdSnS4 thin films for use in solar cells. Mater. Lett. 162, 97–100 (2016)CrossRefGoogle Scholar
  14. Hegedus, S.S., Shafarman, W.N.: Thin-film solar cells: device measurements and analysis. Prog. Photovolt. 12, 155–176 (2004)CrossRefGoogle Scholar
  15. Hussain, S., Murtaza, G., Khan, S.H., Khan, A., Ali, M.A., Faiza, M., Mahmood, A., Khenata, R.: First principles study of structural, optoelectronic and thermoelectric properties of Cu2CdSnX4 (X = S, Se, Te) chalcogenides. Mater. Res. Bull. 79, 73–83 (2016)CrossRefGoogle Scholar
  16. Ibanez, M., Zamani, R., LaLonde, A., Cadavid, D., Li, W.H., Shavel, A., Arbiol, J., Morante, J.R., Gorsse, S., Snyder, G.J., Cabot, A.: Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J. Am. Chem. Soc. 134, 4060–4063 (2012)CrossRefGoogle Scholar
  17. Ito, K., Nakazawa, T.: Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 27, 2094–2097 (1988)ADSCrossRefGoogle Scholar
  18. Li, C., Cao, M., Huang, J., Wang, L.J., Shen, Y.: Facile synthesis of ultra-long Cu2CdSnS4 nanowires with wurtzite-derived structure. Mater. Lett. 140, 170–173 (2015)CrossRefGoogle Scholar
  19. Liu, M.L., Chen, I.W., Huang, F.Q., Chen, L.D.: Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 21, 3808–3812 (2009)CrossRefGoogle Scholar
  20. Liu, Y.F., Ge, M.Y., Luo, H.H., Sun, Y., Wu, J., Dai, N.: Synthesis and properties of colloidal Cu2CdSnS4 nanocrystals. J. Infrared Millim. Waves. 31, 1–4 (2012)CrossRefGoogle Scholar
  21. Matsushita, H., Ichikawa, T., Katsui, A.: Structural, thermodynamical and optical properties of Cu2-II-IV-VI4 quaternary compounds. J. Mater. Sci. 40, 2003–2005 (2005)ADSCrossRefGoogle Scholar
  22. Mokurala, K., Bhargava, P., Mallick, S.: Fabrication of low cost Cu2CdSnS4 based counter electrode for dye sensitized solar cells. In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 1534–1537. IEEE (2014)Google Scholar
  23. Nayak, S.K., Ogura, M., Hucht, A., Buschmann, S., Akai, H., Entel, P.: Ab-initio simulations of diluted magnetic semiconductors: cobalt-doped zinc oxide. Phys. Stat. Sol. (a) 205, 1839–1846 (2008)ADSCrossRefGoogle Scholar
  24. Nie, L.Y., Liu, S., Chai, Y.Q., Ruo, Y.: Spray pyrolysis deposition and photoresponse of Cu2CdSnS4 thin films. J. Anal. Appl. Pyrolysis 112, 363–368 (2015)CrossRefGoogle Scholar
  25. Odeh, A.A., Douri, Y.A., Ayub, R.M., Ibraheam, A.S.: Ultrasonic effect on optical, structural, topographical and morphological studies of Cu2CdSnS4 quaternary alloy nanostructures. J. Alloys Compd. 686, 883–895 (2016)CrossRefGoogle Scholar
  26. Olekseyuk, I.D., Gulay, L.D., Dydchak, I.V., Piskach, L.V., Parasyuk, O.V., Marchuk, O.V.: Single crystal preparation and crystal structure of the Cu2Zn/Cd, Hg/SnSe4 compounds. J. Alloys Compd. 340, 141–145 (2002)CrossRefGoogle Scholar
  27. Rouchdi, M., Salmani, E., Hat, A.E., Hassanain, N., Mzerd, A.: Synthesis and magnetic properties of Ni doped ZnO thin films: experimental and Ab-initio study. Surf. Rev. Lett. 7, 1750085–1750094 (2017a)Google Scholar
  28. Rouchdi, M., Salmani, E., Fares, B., Hassanain, N., Mzerd, A.: Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab initio study. Results Phys (2017b). doi: 10.1016/j.rinp.2017.01.023 Google Scholar
  29. Rouchdi, M., Salmani, E., Nassiri, C., Hat, A.E., Hassanain, N., Mzerd, A.: Synthesis and magnetic properties of Mg doped SnO2 thin films: experimental and Ab-initio study. Opt. Quantum Electron. 49, 150–162 (2017c)Google Scholar
  30. Timmo, K., Kuusik, M.K., Altosaar, M., Raudoja, J., Raadik, T., Grossberg, M., Varema, T., Pilvet, M., Leinemann, I., Volobujeva, O., Mellikov, E.: Novel Cu2CdSnS4 and Cu2ZnGeSe4 absorber materials for monograin layer solar cell application. In: Proceedings of the 28th European Photovoltaic Solar Energy Conference, Paris, France. 2385–2388 (2013)Google Scholar
  31. Toyoda, M., Akai, H., Sato, K., Yoshida, H.K.: Electronic structures of (Zn, TM) O (TM: V, Cr, Mn, Fe Co, and Ni) in the self-interaction-corrected calculations. Phys. B 376, 647–650 (2006)ADSCrossRefGoogle Scholar
  32. Vosko, S.H., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980)ADSCrossRefGoogle Scholar
  33. Wang, S.Y., Wang, W., Lu, Z.H.: Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x = 1, 2) thin films. Adv. Mater. Sci. Eng. B. 103, 184–188 (2003)CrossRefGoogle Scholar
  34. Winkler, M.T., Wang, W., Gunawan, O., Hovel, H.J., Todorov, T.K., Mitzi, D.B.: Optical designs that improve the efficiency of Cu2ZnSn(S, Se)4 solar cells. Energy Environ. Sci. 7, 1029–1036 (2014)CrossRefGoogle Scholar
  35. Xiao, Z.Y., Li, Y.F., Yao, B., Deng, R., Ding, Z.H., Wu, T., Yang, G., Li, C.R., Dong, Z.Y., Liu, L., Zhang, L.G., Zhao, H.F.: Band gap engineering of Cu2CdxZn1−xSnS4 alloy for photovoltaic applications: a complementary experimental and first-principles study. J. Appl. Phys. 114, 183506–183512 (2013)ADSCrossRefGoogle Scholar
  36. Xiong, S., Xi, B., Wang, C., Zou, G., Fei, L., Wang, W., Qian, Y.: Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with l-Cysteine’s assistance. Chem. Eur. J. 13, 3076–3081 (2007)CrossRefGoogle Scholar
  37. Zhang, Y., Sun, X., Zhang, P., Yuan, X., Huang, F., Zhang, W.: Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. J. Appl. Phys. 111, 063709–063714 (2012)ADSCrossRefGoogle Scholar
  38. Zhao, W.G., Wang, G., Tian, Q.G., Huang, L.J., Gao, S., Pan, D.C.: Solution-processed Cu2 CdSn(S, Se)4 thin film solar cells. Sol. Energy Mater. Sol. Cells 133, 15–20 (2015)CrossRefGoogle Scholar
  39. Zunger, A., Lany, S., Raebiger, H.: The quest for dilute ferromagnetism in semiconductors: guides and misguides by theory. Physics 3, 53–60 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Rouchdi
    • 1
  • E. Salmani
    • 2
  • N. Hassanain
    • 1
  • A. Mzerd
    • 1
  1. 1.Materials Physics Laboratory, Faculty of SciencesMohammed V UniversityRabatMorocco
  2. 2.LMPHE, Faculty of SciencesMohammed V UniversityRabatMorocco

Personalised recommendations