Advertisement

Ab initio study of thermoelectric properties of Cu3PSe4 and Cu3PS4: alternative materials for thermoelectric applications

Article

Abstract

This letter discusses the thermoelectric properties of Cu3PSe4 and Cu3PS4 compounds, using the Ab initio calculations. These compounds are predicted to be good thermoelectric materials thanks to the nature of their band edge states. Seebeck coefficient of Cu3PSe4 exhibits a maximum value of 1256 µV/K at roopm temperature, whereas it is 2389 µV/K for Cu3PS4. Furthermore, the electrical conductivity is significantly enhanced with doping level while the electronic thermal conductivity is weakly increased. Besides, the factor of merit of these compounds shows a value around the unity only at low doping levels. Hence, this predicts that these compounds may present excellent thermoelectric properties, therefore they could be considered as alternatives for thermoelectric applications.

Keywords

Thermoelectric materials Ab initio calculations Seebeck coefficient Electrical properties Factor of merit 

Notes

Acknowledgements

We thank P. Blaha, K. Schwarz and the group of WIEN2 K for the support of the package WIEN2 K and for useful discussions.

References

  1. Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101–221106 (2006)ADSCrossRefGoogle Scholar
  2. Becke, A.D., Roussel, M.R.: Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 39, 3761–3766 (1989)ADSCrossRefGoogle Scholar
  3. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)ADSCrossRefGoogle Scholar
  4. Bilal, M., Saifullah, Shafiq, M., Khan, B., Rahnamaye Aliabad, H.A., Jalali Asadabadid, S., Rashid Ahmad, Iftikhar Ahmad: Antiperovskite compounds SbNSr3 and BiNSr3: potential candidates for thermoelectric renewable energy generators. Phys. Lett. A 379, 206–210 (2015)ADSCrossRefGoogle Scholar
  5. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz J.: WIEN2 K: an augmented plane wave and local orbitals program for calculating crystal properties. In: Schwarz, K. (ed.), Vienna University of Technology, Austria (2001)Google Scholar
  6. Chaput, L., Pécheur, P., Tobola, J., Scherrer, H.: Transport in doped skutterudites: Ab initio electronic structure calculations. Phys. Rev. B 72, 085126 (2005)ADSCrossRefGoogle Scholar
  7. Contreras, M.A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D.L., Egass, B., Noufi, R.: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu (In1 − xGax) Se2 solar cells. Prog. Photovolt. 13, 209–216 (2005)CrossRefGoogle Scholar
  8. DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999)CrossRefGoogle Scholar
  9. Foster, D.H., Jieratum, V., Kykyneshi, R., Keszler, D.A., Schneider, G.: Electronic and optical properties of potential solar absorber Cu3PSe4. Appl. Phys. Lett. 99, 181903 (2011)ADSCrossRefGoogle Scholar
  10. Foster, D.H., Barras, F.L., Vielma, J.M., Schneider, G.: Defect physics and electronic properties of Cu3 PSe4 from first principles. Phys. Rev. B 88, 195201 (2013)ADSCrossRefGoogle Scholar
  11. Habas, S.E., Platt, H.A.S., van Hest, M.F.A.M., Ginley, D.S.: Low-cost inorganic solar cells: from ink to printed device. Chem. Rev. 110, 6571–6594 (2010)CrossRefGoogle Scholar
  12. Hsu, K.F., et al.: Cubic AgPbmSbTe2 + m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004)ADSCrossRefGoogle Scholar
  13. Itthibenchapong, V., Kokenyesi, R.S., Ritenour, A.J., Zakharov, L.N., Boettcher, S.W., Wagerd, J.F., Keszler, D.A.: Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers. J. Mater. Chem. C 1, 657–662 (2013)CrossRefGoogle Scholar
  14. Jodin, L., Tobola, J., Pecheur, P., Scherrer, H., Kaprzyk, S.: Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations. Phys. Rev. B 70, 184207 (2004)ADSCrossRefGoogle Scholar
  15. Koller, D., Tran, F., Blaha, P.: Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83, 195134 (2011)ADSCrossRefGoogle Scholar
  16. Kumar Gudelli, V., Kanchana, V., Vaitheeswaran, G., Svane, A., Christensen, N.E.: Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. J. Appl. Phys. 114, 223707 (2013)ADSCrossRefGoogle Scholar
  17. Li, Y., Liu, G., Li, J., Chen, K., Li, L., Han, Y., Zhou, M., Xia, M., Jiang, X., Lin, Z.: High thermoelectric performance of In-doped Cu2 SnSe3 prepared by fast combustion synthesis. New J. Chem. 40, 5394–5400 (2016)CrossRefGoogle Scholar
  18. Liu, C., Li, J.: Thermoelectric properties of ZnO nanowires: a first principle research. Phys. Lett. A 375, 2878–2881 (2011)ADSCrossRefGoogle Scholar
  19. Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)ADSCrossRefMATHGoogle Scholar
  20. Madsen, G.K.H., Blaha, P., Schwarz, K., Sjo¨stedt, E., Nordstrom, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)ADSCrossRefGoogle Scholar
  21. Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., Domen, K.: Photocatalyst releasing hydrogen from water. Nature (London) 440, 295 (2006)ADSCrossRefGoogle Scholar
  22. Ohta, M., Biswas, K., Lo, S.-H., He, J., Chung, D.Y., Dravid, V.P., Kanatzidis, M.G.: Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p‐type PbTe Doped with Na2Te. Adv. Energy Mater. 2, 1117–1123 (2012)CrossRefGoogle Scholar
  23. Perdew, J.P., Burke, K., Emzerholf, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. Qu, X., Wang, W., Liu, W., Yang, Z., Duan, X., Jia, D.: Antioxidation and thermoelectric properties of ZnO nanoparticles-coated β-FeSi2. Mater. Chem. Phys. 129, 331–336 (2011)CrossRefGoogle Scholar
  25. Saleemi, M., Toprak, M.S., Li, S., Johnsson, M., Muhammed, M.: Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2 Te3). J. Mater. Chem. 22, 725–730 (2012)CrossRefGoogle Scholar
  26. Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)ADSCrossRefGoogle Scholar
  27. Sevik, C., Çağın, T.: Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds. Phys. Rev. B 82, 045202 (2010)ADSCrossRefGoogle Scholar
  28. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  29. Ugarte, V., Aji, V., Varma, C.M.: Electric, thermoelectric, and thermal conductivities of graphene with short-range unitary and charged impurities. Phys. Rev. B 84, 165429 (2011)ADSCrossRefGoogle Scholar
  30. Wang, H., Hwang, J., Snedaker, M.L., Kim, I., Kang, C., Kim, J., Stucky, G.D., Bowers, J., Kim, W.: High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem. Mater. 27, 944–949 (2015)CrossRefGoogle Scholar
  31. Ziman, J.M.: Electrons and Phonons. OxfordUniversity Press, New York (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. Slassi
    • 1
  • M. Hammi
    • 2
  • O. El Rhazouani
    • 1
  • M. Arejdal
    • 1
  1. 1.LMPHE (URAC 12), Faculté des SciencesUniversité Mohammed V-AgdalRabatMorocco
  2. 2.Département de chimie B.P.1014, Faculté des sciencesLaboratoire des Matériaux Nanotechnologies et EnvironnementRabatMorocco

Personalised recommendations