Advertisement

Optical bistability in defective photonic multilayers doped by graphene

  • Dong Zhao
  • Zhou-qing Wang
  • Hua Long
  • Kai Wang
  • Bing Wang
  • Pei-xiang Lu
Article

Abstract

We study the optical bistability (OB) in photonic multilayers doped by graphene sheets, stacking two Bragg reflectors with a defect layer between the reflectors. OB stems from the nonlinear effect of graphene, so the local field of defect mode (DM) could enhance the nonlinearity and reduce the thresholds of bistability. The structure achieves the tunability of bistability due to that the DM frequency and transmittance could be modulated by the chemical potential. Bistability thresholds and interval of the two stable states could be remarkably reduced by decreasing the chemical potential. A lager Bragg periodic number could increase the localizing of field, but the graphene loss may decrease the intensity of transmission light. We have concluded an appropriate periodic number to achieve OB. The study suggests that the tunable bistability of the structure could be used for all-optical switches in optical communication systems.

Keywords

Optical bistability Nonlinear optics Graphene 

Notes

Acknowledgements

This work is supported by the 973 Program (Grant No. 2014CB921301), the National Natural Science Foundation of China (Grant Nos. 11674117, 11304108), Natural Science Foundation of Hubei Province (Grant No. 2015CFA040).

References

  1. Brandonisio, N., Heinricht, P., Osborne, S., Amann, A., O’Brien, S.: Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback. IEEE Photonics J. 4(1), 95–103 (2012)CrossRefGoogle Scholar
  2. Centeno, E., Felbacq, D.: Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity. Phys. Rev. B 62(12), 614–621 (2000)CrossRefGoogle Scholar
  3. Chen, P.Y., Alù, A.: Atomically thin surface cloak using graphene monolayers. ACS Nano 5(7), 5855–5863 (2011)CrossRefGoogle Scholar
  4. Chen, J., Wang, P., Wang, X., Lu, Y., Zheng, R.S., Ming, H., Zhan, Q.: Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure. Appl. Phys. Lett. 94(8), 081117 (2009)ADSCrossRefGoogle Scholar
  5. Dai, X., Jiang, L., Xiang, Y.: Low threshold optical bistability at terahertz frequencies with graphene surface plasmons. Sci. Rep. 5, 12271 (2015a). doi: 10.1038/srep12271 ADSCrossRefGoogle Scholar
  6. Dai, X., Jiang, L., Xiang, Y.: Tunable optical bistability of dielectric/nonlinear graphene/dielectric heterostructures. Opt. Express 23(5), 6497–6508 (2015b)ADSCrossRefGoogle Scholar
  7. Fan, Y., Wang, B., Wang, K., Long, H., Lu, P.: Plasmonic zener tunneling in binary graphene sheet arrays. Opt. Lett. 41(13), 2978–29811 (2016)ADSCrossRefGoogle Scholar
  8. He, J., Cada, M.: Combined distributed feedback and Fabry–Perot structures with a phase–matching layer for optical bistable devices. Appl. Phys. Lett. 61(18), 2150–2152 (1992)ADSCrossRefGoogle Scholar
  9. He, G.S., Liu, S.H.: Physics of Nonlinear Optics. World Scientific, New York (1999)CrossRefGoogle Scholar
  10. Hendry, E., Hale, P.J., Moger, J., Savchenko, A.K.: Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010)ADSCrossRefGoogle Scholar
  11. Hong, S.Y., Dadap, J.I., Petrone, N., Yeh, P.C., Hone, J., Jr, R.M.O.: Optical third-harmonic generation in graphene. Phys. Rev. X 3, 021014 (2013)Google Scholar
  12. Huang, C., Ye, F., Sun, Z., Chen, X.: Tunable subwavelength photonic lattices and solitons in periodically patterned graphene monolayer. Opt. Express 22(24), 30108–30117 (2014)ADSCrossRefGoogle Scholar
  13. Huang, H., Ke, S., Wang, B., Long, H., Wang, K., Lu, P.: Numerical study on plasmonic absorption enhancement by a rippled graphene sheet. J. Lightwave Technol. 35(2), 320–324 (2017)ADSCrossRefGoogle Scholar
  14. Husakou, A., Herrmann, J.: Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant. Phys. Rev. Lett. 99(12), 127402 (2007)ADSCrossRefGoogle Scholar
  15. Jiang, L., Guo, J., Wu, L., Dai, X., Xiang, Y.: Manipulating the optical bistability at terahertz frequency in the fabry-perot cavity with graphene. Opt. Express 23(24), 31181–31191 (2015)ADSCrossRefGoogle Scholar
  16. Ke, S., Wang, B., Huang, H., Long, H., Wang, K., Lu, P.: Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt. Express 23(7), 8888–8900 (2015)ADSCrossRefGoogle Scholar
  17. Ke, S., Wang, B., Qin, C., Long, H., Wang, K., Lu, P.: Exceptional points and asymmetric mode switching in plasmonic waveguides. J. Lightwave Technol. 34(22), 5258–5262 (2016)ADSCrossRefGoogle Scholar
  18. Kong, X.K., Liu, S.B., Zhang, H.F., Wang, S.Y., Bian, B.R., Dai, Y.: Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects. IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013)CrossRefGoogle Scholar
  19. Lepeshkin, N.N., Schweinsberg, A., Piredda, G., Bennink, R.S., Boyd, R.W.: Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals. Phys. Rev. Lett. 93(12), 123902 (2004)ADSCrossRefGoogle Scholar
  20. Li, L., Xiong, D., Wen, J., Li, N., Zhu, Z.: A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector. Infrared Phys. Technol. 79, 45–49 (2016)ADSCrossRefGoogle Scholar
  21. Li, L., Wang, Z., Li, F., Long, H.: Efficient generation of highly elliptically polarized attosecond pulses. Opt. Quantum Electron. 49(73), (2017). doi: 10.1007/s11082-017-0912-z CrossRefGoogle Scholar
  22. Liu, W., Wang, B., Ke, S., Qin, C., Long, H., Wang, K., Lu, P.: Enhanced plasmonic nanofocusing of terahertz waves in tapered graphene multilayers. Opt. Express 24(13), 14765–14780 (2016)ADSCrossRefGoogle Scholar
  23. Mehdian, H., Mohammadzahery, Z., Hasanbeigi, A.: The effect of magnetic field on bistability in 1D photonic crystal doped by magnetized plasma and coupled nonlinear defects. Phys. Plasmas 21, 502–543 (2013)Google Scholar
  24. Mikhailov, S.A.: Non-linear electromagnetic response of graphene. EPL 79, 27002 (2007)ADSCrossRefGoogle Scholar
  25. Noskov, R.E., Zharov, A.A.: Optical bistability of planar metal/dielectric nonlinear nanostructures. Opto Electron. Rev. 14(3), 217–223 (2006)ADSCrossRefGoogle Scholar
  26. Qin, M., Zhu, X.: Molecular orbital imaging for partially aligned molecules. Opt. Laser Technol. 87, 79–86 (2017)ADSCrossRefGoogle Scholar
  27. Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Nonreciprocal phase shift and mode modulation in dynamic graphene waveguides. J. Lightwave Technol. 34(16), 3877–3883 (2016)Google Scholar
  28. Smirnova, D.A., Shadrivov, I.V., Smirnov, A.I., Kivshar, Y.S.: Dissipative plasmon-solitons in multilayer graphene. Laser Photonics Rev. 8(2), 291–296 (2014)CrossRefGoogle Scholar
  29. Soljacić, M., Ibanescu, M., Johnson, S.G., Fink, Y., Joannopoulos, J.D.: Optimal bistable switching in nonlinear photonic crystals. Phys. Rev. E 66, 055601 (2002)ADSCrossRefGoogle Scholar
  30. Solookinejad, G.: Controllable optical bistability and multistability in a slab defected with monolayer graphene nanostructure. Eur. Phys. J. Plus 131(126), 1–9 (2016)Google Scholar
  31. Sreekanth, K.V., Rashed, A.R., Veltri, A., Elkabbash, M., Strangi, G.: Optical bistability in Ag–Al2O3 one-dimensional photonic crystals. EPL 112, 14005 (2015)ADSCrossRefGoogle Scholar
  32. Svensson, B., Assanto, G., Stegeman, G.I.: Guided-wave optical bistability and limiting in zinc sulfide thin films. J. Appl. Phys. 67(8), 3882–3885 (1990)ADSCrossRefGoogle Scholar
  33. Thongrattanasiri, S., Silveiro, I., Javier, G.D.A.F.: Plasmons in electrostatically doped graphene. Appl. Phys. Lett. 100(20), 201105 (2012)ADSCrossRefGoogle Scholar
  34. Tong, A.H., Zhou, Y.M., Lu, P.X.: Bifurcation of ion momentum distributions in sequential double ionization by elliptically polarized laser pulses. Opt. Quantum Electron. 49(77), (2017). doi: 10.1007/s11082-017-0914-x CrossRefGoogle Scholar
  35. Wang, R., Dong, J., Xing, D.Y.: Dispersive optical bistability in one-dimensional doped photonic band gap structures. Phys. Rev. E 55(5), 6301–6304 (1997)ADSCrossRefGoogle Scholar
  36. Wang, F.Y., Li, G.X., Tam, H.L., Cheah, K.W., Zhu, S.N.: Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal. Appl. Phys. Lett. 92(21), 211109 (2008)ADSCrossRefGoogle Scholar
  37. Wang, B., Zhang, X., Garcíavidal, F.J., Yuan, X., Teng, J.: Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys. Rev. Lett. 109(7), 073901 (2012)ADSCrossRefGoogle Scholar
  38. Wang, H., Wu, J., Guo, J., Jiang, L., Xiang, Y., Wen, S.: Low-threshold optical bistability with multilayer graphene-covering otto configuration. J. Phys. D Appl. Phys. 49(25), 255306 (2016a)ADSCrossRefGoogle Scholar
  39. Wang, Z., Wang, B., Long, H., Wang, K., Lu, P.: Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays. Opt. Lett. 41(15), 3619–3622 (2016b)ADSCrossRefGoogle Scholar
  40. Wang, Z., Wang, B., Wang, K., Long, H., Lu, P.: Vector plasmonic lattice solitons in nonlinear graphene-pair arrays. Opt. Lett. 41(15), 3619–3622 (2016c)ADSCrossRefGoogle Scholar
  41. Wang, F., Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Rabi oscillations of plasmonic supermodes in graphene multilayer arrays. IEEE J. Sel. Top. Quantum Electron. 23(1), 1–5 (2017a)CrossRefGoogle Scholar
  42. Wang, F., Wang, Z., Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Asymmetric plasmonic supermodes in nonlinear graphene multilayers. Opt. Express 25(2), 1234–1241 (2017b)ADSCrossRefGoogle Scholar
  43. Xiang, Y., Dai, X., Guo, J., Wen, S.: Tunable optical bistability at the graphene-covered nonlinear interface. Appl. Phys. Lett. 104(5), 051108 (2014)ADSCrossRefGoogle Scholar
  44. Yanik, M.F., Fan, S., Soljacić, M., Joannopoulos, J.D.: All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28(24), 2506–2508 (2003)ADSCrossRefGoogle Scholar
  45. Yariv, A., Yeh, P.: Photonics, Optical Electronics in Modern Communications, 6th edn. Oxford University Press, New York (2007)Google Scholar
  46. Zhang, X., Zhu, X., Liu, X., Wang, D., Zhang, Q., Lan, P., Lu, P.: Ellipticity-tunable attosecond XUV pulse generation with a rotating bichromatic circularly polarized laser field. Opt. Lett. 42(6), 1027–1030 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dong Zhao
    • 1
    • 2
  • Zhou-qing Wang
    • 1
  • Hua Long
    • 1
  • Kai Wang
    • 1
  • Bing Wang
    • 1
  • Pei-xiang Lu
    • 1
    • 3
  1. 1.School of Physics and Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Electronics Information and EngineeringHubei University of Science and TechnologyXianningChina
  3. 3.Laboratory for Optical Information TechnologyWuhan Institute of TechnologyWuhanChina

Personalised recommendations