Advertisement

Mechanism investigation of a narrow-band super absorber using an asymmetric Fabry–Perot cavity

  • Qiang Li
  • Jinsong Gao
  • Haigui Yang
  • Xiaoyi Wang
  • Hai Liu
  • Zizheng Li
Article
  • 174 Downloads

Abstract

We propose a metal–insulator-metal super absorber based on an asymmetric Fabry–Perot cavity, by which a perfect narrow-band absorption can be achieved. In this structure, two silver layers form a cavity spaced by a lossless silicon oxide layer. The absorption of the absorber can reach about 98% and its absorption peak can be tuned by altering the thickness of the middle SiO2 layer. We further present a deep comprehension on the physics mechanism of such high absorption. This super absorber can be easily fabricated by mature thin film technology, which make it an appropriate candidate for photodetectors, sensing, and spectroscopy.

Keywords

Super absorber Thin film Metal–insulator-metal structure Fabry–Perot cavity 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1435210, 61306125, 61675199 and 11604329), the Science and Technology Innovation Project (Y3CX1SS143) of CIOMP, the Science and Technology Innovation Project of Jilin Province (Nos. 20130522147JH and 20140101176JC).

References

  1. Byoungchoo, P., Soo, H.Y., Chan, Y.C., Young, C.K., Jung, C.S., Hong, G.J., Yoon, H.H., Inchan, H., Ku, Y.B., Young, I.L., Han, S.U., Guang, S.C., Eun, H.C.: Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors. Light Sci. Appl. 3, e222 (2014)CrossRefGoogle Scholar
  2. Chuan, F.G., Tianyi, S., Feng, C., Qian, L., Zhifeng, R.: Metallic nanostructures for light trapping inenergy-harvesting devices. Light Sci. Appl. 3, e161 (2014)CrossRefGoogle Scholar
  3. Claire, M.W., Xianliang, L., Willie, J.P.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, 98–120 (2012)Google Scholar
  4. Costantini, D., Lefebvre, A., Coutrot, A.L., Moldovan-Doyen, I., Hugonin, J.P., Boutami, S., Marquier, F., Benisty, H., Greffet, J.J.: Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. A 4, 014023 (2015)CrossRefGoogle Scholar
  5. Hamidreza, C., David, S., Mark, L.B.: Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014)CrossRefGoogle Scholar
  6. Jian, W., Wei, B.L., Xiao, B.L., Ji, L.L.: Terahertz wavefront control based on graphene manipulated Fabry–Pérot cavities. IEEE Photon. Technol. Lett. 28, 971–974 (2016)Google Scholar
  7. Lin, Y.C., Peng, Y.F., Alok, P.V., Justin, S.W., Zong, F.Y., Wen, S.C., Jon, A.S., Shanhui, F., Mark, L.B.: Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010)CrossRefGoogle Scholar
  8. Mikhail, A.K., Romain, B., Patrice, G., Federico, C.: Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013)Google Scholar
  9. Minkyu, C., JungHun, S., Jaeseong, L., Deyin, Z., Hongyi, M., Xin, Y., Munho, K., Xudong, W., Weidong, Z., Zhenqiang, M.: Ultra-thin distributed bragg reflectors via stacked single-crystal silicon nanomembranes. Appl. Phys. Lett. 106, 181107 (2015)CrossRefGoogle Scholar
  10. Palik, E.D.: Handbook of Optical Constants in Solids. Academic Press, San Diego (1991)Google Scholar
  11. Qiang, L., Zizheng, L., Haigui, Y., Hai, L., Xiaoyi, W., Jinsong, G., Jingli, Z.: Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission. Opt. Express 24, 25885–25893 (2016)CrossRefGoogle Scholar
  12. Renato, O., Alberto, T., Pierluigi, D.: Bimodal resonance phenomena—part I: generalized Fabry-Pérot interferometers. IEEE J. Quantum Electron. 52, 6100508 (2016)Google Scholar
  13. Salisbury, W.W.W.: Absorbent body for electromagnetic waves. Patent US 2599944 (1952)Google Scholar
  14. Stephen, Y.C., Wei, D.: Ultrathin, high-efficiency, broad-band, omniacceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt. Express 21, A60–A76 (2012)Google Scholar
  15. Thomas, A., Raz, A., Ron, N., Kyriacos, K., Vojte, K., Aleksey, R., Phil, C., David, J.W.: Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light Sci Appl. 5, e16036 (2016)CrossRefGoogle Scholar
  16. Vivian, E.F., Luke, A.S., Domenico, P., Harry, A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)CrossRefGoogle Scholar
  17. Wei, L., Jason, V.: Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014)ADSCrossRefGoogle Scholar
  18. Xiang, C.M., Ying, D., Lin, Y., Bai, B.H.: Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 5, e16017 (2016)CrossRefGoogle Scholar
  19. Yan, R.H., Simes, R.J., Coldren, L.A.: Electro absorptive Fabry–Perot reflection modulators with asymmetric mirrors. IEEE Photon. Technol. Lett. 9, 1041–1135 (1998)Google Scholar
  20. Yeh, P.: Optical Waves in Layered Media. Wiley, New York City (2005)Google Scholar
  21. Yen, H.S., Yuan, F.K., Shi, L.C., Qian, Y.Y.: Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci. Appl. 1, e14 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Qiang Li
    • 1
    • 2
  • Jinsong Gao
    • 1
    • 2
  • Haigui Yang
    • 1
  • Xiaoyi Wang
    • 1
  • Hai Liu
    • 1
  • Zizheng Li
    • 1
  1. 1.Key Laboratory of Optical System Advanced Manufacturing TechnologyChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations