Advertisement

Apodized fully-etched surface grating coupler using subwavelength structure for standard silicon-on-insulator waveguide

  • Jing Xu
  • Xin Jin
  • Yanli Zhao
Article

Abstract

We design and demonstrate the fully-etched apodized grating couplers based on the silicon-on-insulator (SOI) platform using subwavelength structure for both transverse electric (TE) and transverse magnetic (TM) modes operation. The subwavelength grating (SWG) is used to engineer the refractive index using second-order effective medium theory (EMT). The whole designing procedure is given in details, especially a feasible and programmable method is developed to precisely manipulate the coupling strength of each grating cycle. A perfect Gaussian output beam can be synthesized for the TE mode operation, achieving a field overlap up to 98.3% with the Gaussian fiber mode. The simulated peak coupling losses are −4.63 and −2.99 dB for the TE mode and the TM mode, respectively, which are comparable with conventional shallowly etched grating couplers, realizing a fabrication simplification without performance penalty. The measured peak coupling loss is −7.6 dB for the TE mode coupler with a 1 dB bandwidth of 45 nm, and −6.1 dB for the TM mode coupler with a 1 dB bandwidth of 34 nm.

Keywords

Grating couplers Silicon-on-insulator Sub-wavelength grating Apodized Fully-etched Second-order EMT 

Notes

Acknowledgements

This work was supported by the National Hi-Tech Research and Development Program of China (Grant No. 2008AA1Z207), Natural Science foundation of Hubei Province, China (Grant No. 2010CDB01606), Fundamental Research Funds for the Central Universities (HUST: 2016YXMS027), Huawei innovation Research Program (YJCB2010032NW, YB2012120133, YB2014010026, and YB2016040002) and Scientific Research Foundation for the Retuned Overseas Chinese Scholars.

References

  1. Antos, R., Veis, M.: Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals. Opt. Express 18(26), 27511–27524 (2010)ADSCrossRefGoogle Scholar
  2. Benedikovic, D., Cheben, P., Schmid, J.H., Xu, D.X., Lapointe, J., Wang, S.R., Halir, R., Ortega-Monux, A., Janz, S., Dado, M.: High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev. 8(6), L93–L97 (2015)CrossRefGoogle Scholar
  3. Bienstman, P., Baets, R.: Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt. Quantum Electron. 33(4), 327–341 (2001)CrossRefGoogle Scholar
  4. Chen, X., Tsang, H.K.: Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers. IEEE Photon. J. 1(3), 184–190 (2009)CrossRefGoogle Scholar
  5. Chen, X., Tsang, H.K.: Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides. Opt. Lett. 36(6), 796–798 (2011)ADSCrossRefGoogle Scholar
  6. Chen, X., Li, C., Fung, C.K.Y., Lo, S.M.G., Tsang, H.K.: Apodized waveguide grating couplers for efficient coupling to optical fibers. IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010)ADSCrossRefGoogle Scholar
  7. Ding, Y., Ou, H., Peucheret, C.: Ultra-high-efficiency apodized grating coupler using fully etched photonic crystals. Opt. Lett. 38(15), 2732–2734 (2013)ADSCrossRefGoogle Scholar
  8. Halir, R., Cheben, P., Janz, S., Xu, D.X., Molina-Fernández, Í., Wangüemert-Pérez, J.G.: Waveguide grating coupler with subwavelength microstructures. Opt. Lett. 34(9), 1408–1410 (2009)ADSCrossRefGoogle Scholar
  9. Halir, R., Cheben, P., Schmid, J.H., Ma, R., Bedard, D., Janz, S., Xu, D.X., Densmore, A., Lapointe, J., Molina-Fernández, Í.: Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure. Opt. Lett. 35(19), 3243–3245 (2010)ADSCrossRefGoogle Scholar
  10. Halir, R., Ortega-Monux, A., Schmid, J.H., Alonso-Ramos, C., Lapointe, J., Xu, D.X., Wanguemert-Perez, G., Molina-Fernandez, I., Janz, S.: Recent advances in silicon waveguide devices using sub-wavelength gratings. IEEE J. Sel. Topics Quantum Electron. 20(4), 279–291 (2014)CrossRefGoogle Scholar
  11. Iwata, K., Nagata, R.: Calculation of refractive index distribution from interferograms using the born and Rytov’s approximation. Jan. J. Appl. Phys. 14(S1), 379–383 (1982)ADSCrossRefGoogle Scholar
  12. Liu, L., Pu, M., Yvind, K., Hvam, J.M.: High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure. Appl. Phys. Lett. 96(5), 051126 (2010)ADSCrossRefGoogle Scholar
  13. Raguin, D.H., Morris, G.M.: Antireflection structured surfaces for the infrared spectral region. Appl. Opt. 32(7), 1154–1167 (1993)ADSCrossRefGoogle Scholar
  14. Taillaert, D., Bienstman, P., Baets, R.: Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Opt. Lett. 29(23), 2749–2751 (2004)ADSCrossRefGoogle Scholar
  15. Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., Baets, R.: Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jan. J. Appl. Phys. 45(8A), 6071–6077 (2006)ADSCrossRefGoogle Scholar
  16. Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., Takahashi, J.I., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S.I., Morita, H.: Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Topics Quantum Electron. 11(1), 232–240 (2005)CrossRefGoogle Scholar
  17. Waldhäusl, R., Schnabel, B., Dannberg, P., Kley, E.B., Brauer, A., Karthe, W.: Efficient coupling into polymer waveguides by gratings. Appl. Opt. 36(36), 9383–9390 (1997)ADSCrossRefGoogle Scholar
  18. Xu, X., Subbaraman, H., Covey, J., Kwong, D., Hosseini, A., Chen, R. T.: Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics. Appl. Phys. Lett. 101(3), 031109 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations