Multiple InGaAs/InP single-photon avalanche detector scheme for wavelength-division-multiplexed quantum communications in a single transmission fiber

  • Moon-Hyeok Lee
  • Kiwoo Kim
  • Changkyun Ha
  • Dong Wook Kim
  • Yudeuk Kim
  • Kyong Hon Kim


We propose a wavelength-division-multiplexed (WDM) scheme for high-speed and high-capacity quantum communications in a single transmission fiber. The scheme involves multiple weak coherent-state signal pulse sources (WCS-SPSs) and multiple single photon detectors (SPDs). Quantum signals encoded with WDM WCS-SPSs are transmitted through a standard single mode fiber to a receiver composed of WDM SPDs. This WDM scheme can provide high transmission capacity by avoiding the afterpulse effect of InGaAs/InP single-photon avalanche detectors (SPADs) but by adding up the total avalanche counts. We performed numerical calculations on the reduced afterpulse effect and the increased total quantum transmission capacity of the WDM scheme based on measured avalanche count data and previously reported afterpulse data from the InGaAs/InP SPADs. The results indicate that the WDM scheme provides increased quantum transmission capacity by avoiding increased afterpulse effects despite increased insertion loss and crosstalk due to the WDM devices.


Quantum communications Quantum cryptography Avalanche photodiodes Quantum detectors Wavelength-division-multiplexed (WDM) 



This work was supported by Inha University Research Grant #51674-01.


  1. Campbell, J.C., Sun, W., Lu, Z., Itzler, M.A., Jiang, X.: Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes. IEEE J. Quantum Electron. 48(12), 1505–1511 (2012)ADSCrossRefGoogle Scholar
  2. Choi, I., Young, R.J., Townsend, P.D.: Quantum information to the home. New J. Phys. 13, 063039 (2011)ADSCrossRefGoogle Scholar
  3. Choi, I., Young, R.J., Townsend, P.D.: Quantum key distribution on a 10 Gb/s WDM-PON. Opt. Express 18(9), 9600–9612 (2010)ADSCrossRefGoogle Scholar
  4. Comandar, L.C., Fröhlich, B., Lucamarini, M., Patel, K.A., Sharpe, A.W., Dynes, J.F., Yuan, Z.L., Penty, R.V., Shields, A.J.: Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett. 104, 021101 (2014)ADSCrossRefGoogle Scholar
  5. Dixon, A.R., Dynes, J.F., Lucanmarini, M., Fröhlich, B., Sharpe, A.W., Plews, A., Tam, S., Yuan, Z.L., Tanizawa, Y., Sato, H., Kawamura, S., Fujiwara, M., Sasaki, M., Shields, A.J.: High speed prototype quantum key distribution system and long term field trial. Opt. Express 23(6), 7583–7592 (2015)ADSCrossRefGoogle Scholar
  6. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)ADSCrossRefGoogle Scholar
  7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRefGoogle Scholar
  8. Gol’tsman, G.N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B., Dzardanov, A., Williams, C., Sobolewski, R.: Picosecond superdonducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)ADSCrossRefGoogle Scholar
  9. Hu, C., Zheng, X., Campbell, J.C., Onat, B.M., Jiang, X., Itzler, M.A.: Characterization of an InGaAs/InP-based single-photon avalanche diode with gated-passive quenching with active reset circuit. J. Mod. Opt. 58, 10–20 (2011)Google Scholar
  10. Itzler, M.A., Jiang, X., Entwistle, M., Slomkowski, K., Tosi, A., Acerbi, F., Zappa, F., Cova, S.: Advanced in InGaAsP-based avalanche diode single photon detectors. J. Mod. Opt. 58, 174–200 (2011)ADSCrossRefGoogle Scholar
  11. Itzler, M.A., Jiang, X., Entwistle, M.: Power law temporal dependence of InGaAs/InP SPAD afterpulsing. J. Mod. Opt. 59, 1472–1480 (2012)ADSCrossRefGoogle Scholar
  12. Korzh, B., Walenta, N., Lunghi, T., Gisin, N., Zbinden, H.: Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency. Appl. Phys. Lett. 104, 081108 (2014)ADSCrossRefGoogle Scholar
  13. Lee, S.H., Jeong, K.H., Kim, K.H., Lee, M.H.: Low-noise single-photon detector for the 1.5-μm wavelength region. J. Korean Phys. Soc. 50(1), 1–5 (2007)Google Scholar
  14. Lee, S.H., Jeong, K.H., Kim, S.H., Kim, K.H.: Rayleigh-backscattering-suppressed two-way quantum key distribution. J. Korean Phys. Soc. 52(1), 5–10 (2008)ADSCrossRefGoogle Scholar
  15. Lee, M.H., Ha, C., Jeong, H.-S., Kim, D.W., Lee, S.H., Lee, M.H., Kim, K.H.: Wavelength-division-multiplexed InGaAs/InP avalanche photodiodes for quantum key distributions. Opt. Commun. 361, 162–167 (2016)ADSCrossRefGoogle Scholar
  16. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014)ADSCrossRefGoogle Scholar
  17. Lo, H.-K., Ma, X., Chen, K.: Decay state quantum key distributon. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  18. Lu, Z., Sun, W., Zhou, Q., Campbell, J., Jiang, X., Itzler, M.A.: Improved sinusoidal gating with balanced InGaAs/InP Single Photon Avalanche Diodes. Opt. Express 21(14), 16716–16721 (2013)ADSCrossRefGoogle Scholar
  19. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)ADSCrossRefGoogle Scholar
  20. Mora, J., Amaya, W., Ruiz-Alba, A., Martinez, A., Calvo, D., Munoz, V.G., Capmany, J.: Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Opt. Express 20(15), 16358–16365 (2012)ADSCrossRefGoogle Scholar
  21. Nambu, Y., Takahashi, S., Yoshino, K., Tanaka, A., Fujiwara, M., Sasaki, M., Tajima, A., Yorozu, S., Tomita, A.: Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution. Opt. Express 19(21), 20531–20541 (2011)ADSCrossRefGoogle Scholar
  22. Namekata, N., Adachi, S., Inoue, S.: 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Opt. Express 17(8), 6275–6282 (2009)ADSCrossRefGoogle Scholar
  23. Patel, K.A., Dynes, J.F., Lucamarini, M., Choi, I., Sharpe, A.W., Yuan, Z.L., Penty, R.V., Shields, A.J.: Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks. Appl. Phys. Lett. 104, 051123 (2014)ADSCrossRefGoogle Scholar
  24. Tanaka, A., Fujiwara, M., Nam, S.W., Nambu, Y., Takahashi, S., Maeda, W., Yoshino, K.-I., Miki, S., Baek, B., Wang, Z., Tajima, A., Sasaki, M., Tomita, A.: Ultrafast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. Opt. Express 16(15), 11354–11360 (2008)ADSCrossRefGoogle Scholar
  25. Tanaka, A., Fujiwara, M., Yoshino, K.-I., Takahashi, S., Nambu, Y., Tomita, A., Miki, S., Yamashita, T., Wang, Z., Sasaki, M., Tajima, A.: High-speed quantum key distribution system for 1-Mbps real-time key generation. IEEE J. Quantum Electron. 48(4), 542–555 (2012)ADSCrossRefGoogle Scholar
  26. Townsend, P.D.: Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electron. Lett. 33(3), 188–190 (1997)CrossRefGoogle Scholar
  27. Walenta, N., Lunghi, T., Guinnard, O., Houlmann, R., Zbinden, H., Gisin, N.: Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature. J. Appl. Phys. 112, 063106 (2012)ADSCrossRefGoogle Scholar
  28. Yoshino, K.-I., Ochi, T., Fujiwara, M., Sasaki, M., Tajima, A.: Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days. Opt. Express 21(25), 31395–31401 (2013)ADSCrossRefGoogle Scholar
  29. Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy state. Phys. Rev. Lett. 96, 070502 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Moon-Hyeok Lee
    • 1
  • Kiwoo Kim
    • 1
  • Changkyun Ha
    • 2
  • Dong Wook Kim
    • 1
  • Yudeuk Kim
    • 1
  • Kyong Hon Kim
    • 1
  1. 1.Department of PhysicsInha UniversityIncheonSouth Korea
  2. 2.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea

Personalised recommendations