Simulation studies of DFB laser longitudinal structures for narrow linewidth emission

  • Heikki Virtanen
  • Topi Uusitalo
  • Mihail Dumitrescu
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016


The paper presents simulation studies targeting high-power narrow-linewidth emission from semiconductor distributed feedback (DFB) lasers. The studies contain analytic and numerical calculations of emission linewidth, side mode suppression ratio and output power for DFB lasers without phase shifts and with \(1\times \lambda /4\) and \(2\times \lambda /8\) phase shifts, taking into account the grating and facets reflectivities, the randomness of the spontaneous emission and the longitudinal photon and carrier density distributions in the laser cavity. Single device structural parameter optimization is generally associated with a trade-off between achieving a narrow linewidth and a high output power. Correlated optimization of multiple structural parameters enables the evaluation of achievable ranges of narrow linewidth and high power combinations. Devices with long cavities and low grating coupling coefficients, \(\kappa\) (keeping \(\kappa L\) values below the levels that promote re-broadening), with AR-coated facets and with a distributed phase-shift have the flattest longitudinal photon and carrier density distributions. This flatness enables stable single-longitudinal-mode operation with high side-mode-suppression ratio up to high injection current densities, which facilitates narrow linewidths and high output powers. The results reported in the paper indicate that Master-Oscillator Power-Amplifier laser structures are needed for achieving W-level high-powers with sub-MHz linewidths because most single-cavity DFB laser structural variations that reduce the linewidth also limit the achievable output power in single-mode operation.


High power Narrow linewidth Distributed feedback laser 



The research has been done within the European Space Agency project Sub-Megahertz Linewidth Laser for Fundamental Physics Missions (Contract No. 4000110645/13/NL/HB).


  1. Carroll, J.E., Whiteaway, J., Plumb, D.: Distributed Feedback Semiconductor Lasers, vol. 10. IET, London (1998)CrossRefGoogle Scholar
  2. Coldren, L.A., Corzine, S.W., Mashanovitch, M.L.: Diode Lasers and Photonic Integrated Circuits, vol. 218. Wiley, New York (2012)CrossRefGoogle Scholar
  3. Coleman, J.J., Bryce, A.C., Jagadish, C.: Advances in Semiconductor Lasers, vol. 86. Academic Press, London (2012)CrossRefGoogle Scholar
  4. Grillot, F., Dagens, B., Provost, J.G., Su, H., Lester, L.F.: Gain compression and above-threshold linewidth enhancement factor in 1.3-inas-gaas quantum-dot lasers. IEEE J. Quantum Electron. 44(10), 946–951 (2008)ADSCrossRefGoogle Scholar
  5. Henry, C.H.: Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron 18(2), 259–264 (1982)ADSCrossRefGoogle Scholar
  6. Laakso, A., Karinen, J., Telkkälä, J., Dumitrescu, M.: The effect of facet reflections in index-coupled distributed feedback lasers with coated facets. Opt. Quantum Electron. 42(11–13), 713–719 (2011)CrossRefGoogle Scholar
  7. Petermann, K.: Laser Diode Modulation and Noise, vol. 3. Springer, Berlin (2012)Google Scholar
  8. Piprek, J., et al.: Optoelectronic Devices. Springer, Berlin (2005)CrossRefGoogle Scholar
  9. Su, H., Zhang, L., Wang, R., Newell, T., Gray, A., Lester, L.: Linewidth study of InAs–InGaAs quantum dot distributed feedback lasers. IEEE Photon. Technol. Lett. 16(10), 2206–2208 (2004)ADSCrossRefGoogle Scholar
  10. Takaki, K., Kise, T., Maruyama, K., Yamanaka, N., Funabashi, M., Kasukawa, A.: Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-\(\upmu\)m continuous-wave distributed-feedback (CW-DFB) laser diodes. IEEE J. Quantum Electron. 39(9), 1060–1065 (2003)ADSCrossRefGoogle Scholar
  11. Virtanen, H.: Time-domain travelling wave modelling of dual-wavelength DFB lasers in remote heterodyne detection links. Master’s thesis. Tampere University of Technology, Tampere, Finland. Retrieved from (2015)
  12. Wang, J., Schunk, N., Petermann, K.: Linewidth enhancement for DFB lasers due to longitudinal field dependence in the laser cavity. Electron. Lett. 23(14), 715–717 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Optoelectronic Research CentreTampere University of TechnologyTampereFinland

Personalised recommendations