Advertisement

Effects of nonuniform distribution of quantum well and quantum wire base on infrared photodetectors under dark conditions

  • Mohamed S. El_Tokhy
  • Imbaby I. Mahmoud
Article

Abstract

This paper presents the effects of uniformity and nonuniformity distribution of quantum well (QW) and wire (QR) base on quantum infrared photodetectors under dark conditions. These detectors are quantum well infrared photodetectors (QWIP) and quantum wire infrared photodetectors (QRIP). Analytical expressions for dark current characteristics of the considered devices are implemented. Additionally, the proposed results are validated against published results in literature and high agreement is accomplished. The potential distribution in QWIP active region depends on weak non-locality approach. Also, the effect of electrons concentration above the barriers on the performance of QRIP is considered. The nonuniformity parameter of QRIP is computed. Moreover, the uniformity and nonuniformity distributions effects of QRs and QWs on dark current ratio between QRIP and QWIP are estimated. This current ratio is changed by uniformity and nonuniformity distribution of QWs and QRs. It is noted that dark current ratio between QRIP and QWIP decreases with applied bias voltage. Hence, the QWIP device is affected by applied bias voltage greater than QRIP. However, this current ratio increases with temperature. Accordingly, the QRIP device is influenced by temperature larger than QWIP. It is noticed that dark current ratio under uniformity distribution is smaller than this ratio under nonuniformity distribution for both QRs and QWs. So, the nonuniformity problem within QRs is a great challenge that must be addressed. Also, the nonuniformity distribution introduces limits to QRIP device characteristics. The results demonstrate that zero value of dark current ratio is attained with zero value of nonuniformity parameter. Also, the dark current of QRIPs is found to be greater than of QWIP structures under large variation of nonuniformity distribution. Even though, this parameter is approximated to 1 under uniform distribution of QWs and QRs. It is observed that nonuniformity distribution parameter is vanished up to 80 K. So, the dependence of the operating temperature on the number of electrons occupied by each QR is evaluated. The obtained results confirm that the applied bias voltage decreases this challenge to some extent. Besides, parameters optimization for QWIPs and QRIP is of primary concern. Therefore, the devices performance is improved. Consequently, the operations of underlined infrared photodetectors are robust against noise sources in far infrared spectrum.

Keywords

Night vision Optoelectronic Imaging Nanoscale Signal to noise ratio (SNR) 

References

  1. Altin, E., Hostut, M., Ergun, Y.: Dark current and optical properties in asymmetric GaAs/AlGaAs staircase-like multiquantum well structure. Infrared Phys. Technol. 58, 74–79 (2013)ADSCrossRefGoogle Scholar
  2. Bai, H., Zhang, J., Wang, X., Liu, X.: Characteristics analysis of dark current in quantum dot infrared photodetectors. Opt. Laser Technol. 48, 337–342 (2013)ADSCrossRefGoogle Scholar
  3. Barickaby, H., Zarifkar, A., Sheikhi, M.H.: A new approach for modeling of dark current characteristics of quantum wire infrared photodetectors. Optoelectron. Lett. 7(4), 0260–0262 (2011)Google Scholar
  4. Castellano, F., Iotti, R.C., Rossi, F., Faist, J., Lhuillier, E., Berger, V.: Modeling of dark current in mid-infrared quantum-well infrared photodetectors. Infrared Phys. Technol. 52, 220–223 (2009)ADSCrossRefGoogle Scholar
  5. de Moura Pedroso, D., Vieira, G.S., Passaro, A.: Modelling of high-temperature dark current in multi-quantum well structures from MWIR to VLWIR. Phys. E 86, 190–197 (2017)CrossRefGoogle Scholar
  6. DeCuir Jr., E.A., Choi, K.-K., Sun, J., Wijewarnasuriya, P.S.: Progress in resonator quantum well infrared photodetector (R-QWIP) focal plane arrays. Infrared Phys. Technol. 70, 138–146 (2015)ADSCrossRefGoogle Scholar
  7. El_Tokhy, M.S., Mahmoud, I.I.: Performance evaluation of quantum well infrared phototransistor instrumentation through modeling. Opt. Eng. 53(5), 054104-1–054104-11 (2014)ADSGoogle Scholar
  8. El_Tokhy, M.S., Mahmoud, I.I.: Performance analysis of PIN photodiode under gamma radiation effects through modeling. J. Opt. 44(4), 353–365 (2015)CrossRefGoogle Scholar
  9. El_Tokhy, M.S., Mahmoud, I.I., Konber, H.A.: Comparative study between different quantum infrared photodetectors. Opt. Quantum Electron. 41(11), 933–956 (2009)CrossRefGoogle Scholar
  10. El_Tokhy, M.S., Mahmoud, I.I., Konber, H.A.: Performance improvement of quantum well infrared photodetectors through modeling. J. Naophotonics 4, 043518-1–043518-15 (2010a)ADSGoogle Scholar
  11. El_Tokhy, M.S., Mahmoud, I.I., Konber, H.A.: Characteristics analysis of quantum wire infrared photodetectors under both dark and illumination conditions. Infrared Phys. Technol. 53(5), 320–335 (2010b)ADSCrossRefGoogle Scholar
  12. Ershov, M., Liu, H.C., Perera, A.G.U., Matsik, S.G.: Optical interference and nonlinearities in quantum-well infrared photodetectors. Phys. E 7, 115–119 (2000)CrossRefGoogle Scholar
  13. Etteh, N.E.I., Harrison, P.: The role of sequential tunnelling in the dark current of quantum well infrared photodetectors (QWIPs). Superlattices Microstruct. 30(5), 273–278 (2001)ADSCrossRefGoogle Scholar
  14. Etteh, N.E.I., Harrison, P.: Quantum mechanical scattering investigation of the dark current in quantum well infrared photodetectors (QWIPs). Infrared Phys. Technol. 44, 473–480 (2003)ADSCrossRefGoogle Scholar
  15. Goldberg, A., Choi, K.K., Cho, E., McQuiston, B.: Laboratory and field performance of megapixel QWIP focal plane arrays. Infrared Phys. Technol. 47, 91–105 (2005)ADSCrossRefGoogle Scholar
  16. Guériaux, V., Nedelcu, A., Carras, M., Huet, O., Marcadet, X., Bois, P.: Mid-wave QWIPs for the [3–4.2 μm] atmospheric window. Infrared Phys. Technol. 52, 235–240 (2009)ADSCrossRefGoogle Scholar
  17. Gunapala, S.D., Bandara, S.V., Liu, J.K., Mumolo, J.M., Hill, C.J., Rafol, S.B., Salazar, D., Woolaway, J., LeVan, P.D., Tidrow, M.Z.: Towards dualband megapixel QWIP focal plane arrays. Infrared Phys. Technol. 50, 217–226 (2007a)ADSCrossRefGoogle Scholar
  18. Gunapala, S.D., Bandara, S.V., Hill, C.J., Ting, D.Z., Liu, J.K., Rafol, S.B., Blazejewski, E.R., Mumolo, J.M., Keo, S.A., Krishna, S., Chang, Y.-C., Shott, C.A.: Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array. Infrared Phys. Technol. 50, 149–155 (2007b)ADSCrossRefGoogle Scholar
  19. Gunapala, S.D., Bandara, S.V., Liu, J.K., Mumolo, J.M., Ting, D.Z., Hill, C.J., Nguyen, J., Simolon, B., Woolaway, J., Wang, S.C., Li, W., LeVan, P.D., Tidrow, M.Z.: 1024 × 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane. Infrared Phys. Technol. 52, 395–398 (2009)ADSCrossRefGoogle Scholar
  20. Hansson, C., Rachavula, K.K.: Comparative study of infrared photodetectors based on quantum wells (QWIPS) and quantum dots (QDIPS). Master’s Thesis, Halmstad University (2006)Google Scholar
  21. Kuffner, P.: Quantum dot interdiffusion for two colour quantum dot infrared photodetectors. A Thesis Submitted as Partial Fulfillment of the Requirements for the Degree of Bachelor of Engineering with Honours at the Australian National University, u3289067 (2006)Google Scholar
  22. Li, N., Xiong, D.-Y., Yang, X.-F., Lu, W., Xu, W.-L., Yang, C.-L., Hou, Y., Fu, Y.: Dark currents of GaAs/AlGaAs quantum-well infrared photodetectors. Appl. Phys. A 89, 701–705 (2007). doi: 10.1007/s00339-007-4142-2 ADSCrossRefGoogle Scholar
  23. Ling, H.S., Wang, S.Y., Lee, C.P., Lo, M.C.: Confinement-enhanced dots-in-a-well QDIPs with operating temperature over 200 K. Infrared Phys. Technol. 52, 281–284 (2009)ADSCrossRefGoogle Scholar
  24. Liu, H., Yang, C., Zhang, J., Shi, Y.: Detectivity dependence of quantum dot infrared photodetectors on temperature. Infrared Phys. Technol. 60, 365–370 (2013)ADSCrossRefGoogle Scholar
  25. Liu, G., Zhang, J., Wang, L.: Dark current model and characteristics of quantum dot infrared photodetectors. Infrared Phys. Technol. 73, 36–40 (2015)ADSCrossRefGoogle Scholar
  26. Martyniuk, P., Rogalski, A.: Quantum-dot infrared photodetectors: status and outlook. Prog. Quantum Electron. 32, 89–120 (2008)ADSCrossRefGoogle Scholar
  27. Matsukura, Y., Uchiyama, Y., Yamashita, H., Nishino, H., Fujii, T.: Responsivity–dark current relationship of quantum dot infrared photodetectors (QDIPs). Infrared Phys. Technol. 52, 257–259 (2009)ADSCrossRefGoogle Scholar
  28. Meola, C., Boccardi, S., Carlomagno, G.M.: Measurements of very small temperature variations with LWIR QWIP infrared camera. Infrared Phys. Technol. 72, 195–203 (2015)ADSCrossRefGoogle Scholar
  29. Mitin, V., Sergeev, A., Vagidov, N., Birner, S.: Improvement of QDIP performance due to quantum dots with built-in charge. Infrared Phys. Technol. 59, 84–88 (2013)ADSCrossRefGoogle Scholar
  30. Negi, C.M.S., Kumar, J.: Investigation of p-type multicolour-broadband quantum dot infrared photodetector. Superlattices Microstruct. 82, 336–348 (2015)ADSCrossRefGoogle Scholar
  31. Ryzhii, V.: Characteristics of quantum well infrared photodetectors. J. Appl. Phys. 81, 6442–6448 (1997). doi: 10.1063/1.364426 ADSCrossRefGoogle Scholar
  32. Ryzhii, V., Liu, H.C.: Contact and space-charge effects in quantum well infrared photodetectors. Jpn. J. Appl. Phys. 38, 5815–5822 (1999)ADSCrossRefGoogle Scholar
  33. Ryzhii, V., Ryzhii, M.: Nonlinear dynamics of recharging processes in multiple quantum well structures excited by infrared radiation. Phys. Rev. B 62, 10292–10296 (2000). doi: 10.1103/PhysRevB.62.10292 ADSCrossRefGoogle Scholar
  34. Ryzhii, V., Khmyrova, I., Ershov, M., Lizuka, T.: Theory of an intersubband infrared phototransistor with a uniform quantum well. Semicond. Sci. Technol. 10, 997–1001 (1995). doi: 10.1088/0268-1242/10/7/016 ADSCrossRefGoogle Scholar
  35. Ryzhii, V., Khmyrova, I., Ryzhii, M., Ershov, M.: Comparison studies of infrared phototransistors with a quantum-well and a quantum-wire base. J. Phys. IV 6, C3-157–C3-161 (1996). doi: 10.1051/jp4:1996324 Google Scholar
  36. Ryzhii, M., Ryzhii, V., Willander, M.: Effect of donor space charge on electron capture processes in quantum well infrared photodetector. Jpn. J. Appl. Phys. 38, 6650–6653 (1999)ADSCrossRefGoogle Scholar
  37. Ryzhii, M., Ryzhii, V., Suris, R., Hamaguchi, C.: Periodic electric-field domains in optically excited multiple-quantum-well structures. Phys. Rev. B 61(4), 2742–2748 (2000a)Google Scholar
  38. Ryzhii, V., Khmyrova, I., Ryzhii, M., Suris, R., Hamaguchi, C.: Phenomenological theory of electric-field domains induced by infrared radiation in multiple quantum well structures. Phys. Rev. B 62, 7268–7274 (2000b). doi: 10.1103/PhysRevB.62.7268 ADSCrossRefGoogle Scholar
  39. Soibel, A., Bandara, S.V., Ting, D.Z., Liu, J.K., Mumolo, J.M., Rafol, S.B., Johnson, W.R., Wilson, D.W., Gunapala, S.D.: A super-pixel QWIP focal plane array for imaging multiple waveband temperature sensor. Infrared Phys. Technol. 52, 403–407 (2009)ADSCrossRefGoogle Scholar
  40. Wang, S.Y., Lee, C.P.: Nonuniform quantum well infrared photodetectors. J. Appl. Phys. 87(522), 522–525 (2000). doi: 10.1063/1.371893 ADSCrossRefGoogle Scholar
  41. Wang, S.Y., Chin, Y.C., Lee, C.P.: A detailed study of non-uniform quantum well infrared photodetector. Infrared Phys. Technol. 42, 177–184 (2001)ADSCrossRefGoogle Scholar
  42. Wang, S.Y., Ling, H.S., Lo, M.C., Lee, C.P.: Detection wavelength and device performance tuning of InAs QDIPs with thin AlGaAs layers. Infrared Phys. Technol. 52, 264–267 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Engineering Department, NRCAtomic Energy AuthorityInshasEgypt

Personalised recommendations