Linear and non-linear optical properties of Ag doped ZnS thin film

  • Esmaeil Shahriari
  • Zohre Maleki Farsani
  • Mohsen Ghasemi Varnamkhasti
  • Reza Zamiri
Article
  • 147 Downloads

Abstract

Un-doped and Silver (Ag) doped zinc sulfide (ZnS) thin films were deposited on glass substrate by thermal evaporation method in the vacuum chamber with different doping concentrations. The structural properties of the thin films were analyzed by X-ray diffraction patterns. There is no peaks corresponding to impurities and Ag2O were detected which suggests that Ag ions were well incorporated in the ZnS lattice structure. On the other hand the intensity of the diffraction peaks increases with the increasing dopant concentration. This might be due the change in electronic density in the crystallographic position of Ag doped ZnS. UV measurement shows a blue shift due to the quantum confinement effect by incorporation of Ag2+ ions in ZnS thin films. The band gap values of ZnS and Ag doped ZnS nanostructures were calculated from transmission data. Photoluminescence (PL) measurements at room temperature show a PL peak at around 450 nm for all thin films. The PL intensity decreases with increasing Ag2+ ions concentration. The nonlinear optical measurements were carried out using Z-scan technique. The results reveal that the films exhibit self-defocusing nonlinearity. There is an increment in the nonlinear refractive index with increasing Ag2+ ions concentration in ZnS thin films. Open aperture Z-scan measurement shows two-photon absorption within the medium. The measurements confirm that the more concentration of Ag dopant also makes it possible to increase the nonlinear absorption coefficient. These results show that ZnS:Ag thin films are promising candidate for various potential applications in the field of nonlinear optics.

Keywords

ZnS Thin film PL Nonlinear refractive index 

References

  1. Anand, K.V., Vinitha, G., Chinnu, M.K., Mohan, R., Jayavel, R.: Enhanced third-order nonlinear optical properties of high purity ZnS nanoparticles. J. Nonlinear Opt. Phys. Mater. 24, 1550016 (2015)CrossRefGoogle Scholar
  2. Bacaksiz, E., Gorur, O., Tomakin, M., Yanmaz, E., Altunbas, M.: Ag diffusion in ZnS thin films prepared by spray pyrolysis. Mater. Lett. 61, 5239–5242 (2007)CrossRefGoogle Scholar
  3. Bang, H., Morishima, S., Sawahata, J., Seo, J., Takiguchi, M., Tsunemi, M., Akimoto, K., Nomura, M.: Concentration quenching of Eu-related luminescence in Eu-doped GaN. Appl. Phys. Lett. 85, 227–229 (2004)ADSCrossRefGoogle Scholar
  4. Bi, C., Pan, L., Guo, Z., Zhao, Y., Huang, M., Ju, X., Xiao, J.Q.: Facile fabrication of wurtziteZnS hollow nanospheres using polystyrene spheres as templates. Mater. Lett. 64, 1681–1683 (2010)CrossRefGoogle Scholar
  5. Bouvy, C., Piret, F., Marine, W., Su, B.L.: Preparation, photoluminescencnt properties and quantum size effect of ZnS nanoparticles masoporous silica CMI-1. Chem. Phys. Lett. 433, 350–354 (2007)ADSCrossRefGoogle Scholar
  6. Boyed, R.W.: Nonlinear Optics, 3rd edn. Academic Press, San Diego (2008)Google Scholar
  7. Christodoulides, D.N., Khoo, I.C., Salamo, G.J., Stegeman, G.I., Van Stryland, E.W.: Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt. Photon. 2, 60–200 (2010)CrossRefGoogle Scholar
  8. Cotter, D., Manning, R.J., Blow, K.J., Ellis, A.D., Kelly, A.E., Nesset, D., Philips, I.D., Poustie, A.J., Rogers, D.C.: Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999)CrossRefGoogle Scholar
  9. de Mello Donega, C.: Synthesis and properties of colloidal heterona nocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011)CrossRefGoogle Scholar
  10. Dounia, R., Migalska-Zalas, A., Addou, M., Bernede, J.C.: Preparation and characterization of highly transparent and conductive indium-zinc oxide thin films deposited by pyrolysis spray technique. Opt. Quant. Electron. 48(339), 1–10 (2016)Google Scholar
  11. Garcia-Mendez, M., Segura, R.R., Coello, V.: The influence of Ce doping on the structural and optoelectronic properties of RF-sputtered ZnO films. Opt. Quant. Electron. 47, 2637–2648 (2015)CrossRefGoogle Scholar
  12. Iwashita, T., Ando, S.: Preparation and characterization of ZnS thin films by the chemical bath deposition method. Thin Solid Films 520, 7076–7082 (2012)ADSCrossRefGoogle Scholar
  13. Jayanthi, K., Chawla, S., Chander, H., Haranath, D.: Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect. Cryst. Res. Technol. 10, 976–982 (2007)CrossRefGoogle Scholar
  14. Karar, N., Singh, F., Mehta, B.R.: Structure and photoluminescence studies on ZnS: Mn nanoparticles. J. Appl. Phys. 95, 656–660 (2004)ADSCrossRefGoogle Scholar
  15. Kim, C.E., Moon, P., Kim, S., Myoung, J.M., Jang, H.W., Bang, J., Yun, I.: Effect of carrier concentration on optical band gap shirt in ZnO: Ga thin films. Thin Solid Films 518, 6304–6307 (2010)ADSCrossRefGoogle Scholar
  16. Kumari, V., Kumar, V., Malik, B.P., Mehra, R.M., Mohan, D.: Nonlinear optical properties of erbium doped zinc oxide (EZO) thin films. Opt. Commun. 285, 2182–2188 (2012)ADSCrossRefGoogle Scholar
  17. Lee, S., Song, D., Kim, D., Lee, J., Kim, S., Park, I.Y., Choi, Y.D.: Effects of synthesis temperature on particle size/shape and photoluminescence of doped ZnS: Cu nanocrystals. Mater. Lett. 58, 342–346 (2004)CrossRefGoogle Scholar
  18. Manzoor, K., Vadera, S.R., Kumar, N., Kutty, T.R.N.: Multicolor electroluminescent devices using doped ZnS nanocrystals. Appl. Phys. Lett. 84, 284–286 (2004)ADSCrossRefGoogle Scholar
  19. Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials. Clarendon Press, Oxford (1971)Google Scholar
  20. Mou Pal, U.P.: Justo Miguel, G.Y.J., Felipe, P.R., Effects of crystallization and dopant concentration on the emission behavior of TiO2 Eu nanophosphors. Nanoscale Res. Lett. 7, 1–12 (2012)ADSCrossRefGoogle Scholar
  21. Nagaraja, K.K., Pramodini, S., Santhosh Kumar, A., Nagaraja, H.S., Poornesh, P., Kekuda, D.: Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35, 431–439 (2013)ADSCrossRefGoogle Scholar
  22. Naskar, M.K., Patra, A., Chatterjee, M.: Understanding the role surfactants on the preparation of ZnS nanocrystals. J. Colloids Interface Sci. 297, 271–275 (2006)CrossRefGoogle Scholar
  23. Ohyama, M.: Sol–gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation. J. Am. Ceram. Soc. 81, 1622–1632 (1998)CrossRefGoogle Scholar
  24. Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)ADSCrossRefMATHGoogle Scholar
  25. Porambo, M.W., Marsh, A.L.: Synthesis and photoluminescent properties of doped ZnS nanocrystals capped by poly (vinylpyrrolidone). Opt. Mater. 31, 1631–1635 (2009)ADSCrossRefGoogle Scholar
  26. Prasanth, S., Irshad, P., Rithesh Raj, D., Vineeshkumar, T.V., Philip, R., Sudarsanakumar, C.: Nonlinear optical property and fluorescence quenching behavior of PVP capped ZnS nanoparticles co-doped with Mn2+ and Sm3+. J. Lumin. 166, 167–175 (2015)CrossRefGoogle Scholar
  27. Qin, D., Yang, G., He, G., Zhang, L., Zhang, Q., Li, L.: The investigation on synthesis and optical properties of Ag-doped ZnS nanocrystals by hydrothermal method. Chalcogenide Lett. 9, 441–446 (2012)Google Scholar
  28. Sapra, S., Prakash, A., Ghanrekar, A., Periasamy, N., Sharma, D.D.: Emission properties of manganese doped ZnS nanocrystals. J. Phys. Chem. B 109, 1663–1668 (2005)CrossRefGoogle Scholar
  29. Sheikh-Bahae, M.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)ADSCrossRefGoogle Scholar
  30. Tamgadge, Y.S., Sunatkari, A.L., Talwatkar, S.S., Pahurkar, V.G., Muley, G.G.: linear and nonlinear optical properties of nanostructured Zn(1−x)SrxO-PVA composite thin films. Opt. Mater. 37, 42–50 (2014)ADSCrossRefGoogle Scholar
  31. Wang, H., Lu, X., Zhao, Y., Wang, C.: Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electro-spinning. Mater. Lett. 60, 2480–2484 (2006)CrossRefGoogle Scholar
  32. Wei, S., Lee, B.I., Lin, Z., Tong, W., Wagner, B.K., Park, W.: Synthesis and photoluminescence enhancement of Mn2+ doped ZnS nanocrystals. J. Lumin. 92, 73–78 (2000)CrossRefGoogle Scholar
  33. Yu, Y.Q., Luo, L.B., Zhu, Z.F., Nie, B., Zhang, Y.G., Zenq, L.H., Zhang, Y., Wu, C.Y., Wang, L., Jianq, Y.: High-speed ultraviolet-visible-near infrared photodiodes based on p-ZnS nanoribbon-n-silicon heterojunction. CrystEngComm 15, 1635–1642 (2013)CrossRefGoogle Scholar
  34. Zawadzka, A., Plociennik, P., Strzelecki, J.: Temperature-dependent luminescence dynamics for ZnO thin films. Opt. Quant. Electron. 46, 87–101 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Esmaeil Shahriari
    • 1
    • 2
  • Zohre Maleki Farsani
    • 1
  • Mohsen Ghasemi Varnamkhasti
    • 1
  • Reza Zamiri
    • 3
    • 4
  1. 1.Department of Physics, Faculty of ScienceShahrekord UniversityShahrekordIran
  2. 2.Photonic Research GroupShahrekord UniversityShahrekordIran
  3. 3.Department for Management of Science and Technology DevelopmentHo Chi Minh CityVietnam
  4. 4.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations