Synthesis and magnetic properties of Mg doped SnO2 thin films: experimental and Ab-initio study

  • M. Rouchdi
  • E. Salmani
  • A. El hat
  • C. Nassiri
  • N. Hassanain
  • A. Mzerd


Mg-doped tin oxide (SnO2) thin films were deposited using spray pyrolysis technique with an aqueous solution of SnCl2 and magnesium sulfate (Mg (SO4)·7H2O) on a heated glass substrate. In this work, the effect of Mg doping on the structural, optical and electrical properties of SnO2 was investigated in some detail by X-ray diffraction, UV–Vis spectroscopy and Hall Effect measurements. The XRD diffractograms demonstrate that SnO2 crystallized in tetragonal rutile structure with preferential orientation along (110) plane. The average transmittance in the visible range was increased from 65 to 78% and the values of energy band gap were found in the range of 3.62–3.87 eV. The lowest resistivity [1.021 × 101 (Ω.cm)] was obtained for the film doped with 5 at% Mg. The electronic structure and optical properties of the rutile structure Sn1−xMgxO2 were obtained by ab initio calculations using the Korringa-Kohn-Rostoker method (KKR) combined with the Coherent Potential Approximation (CPA), as well as CPA confirms our results.


SnO2 Thin films Spray pyrolysis Optical properties Hall Effect Ab-initio calculations 


  1. Abdelkrim, A., Rahmane, S., Abdelouahab, O., Abdelmalek, N., Brahim, G.: Effect of solution concentration on the structural, optical and electrical properties of SnO2 thin films prepared by spray pyrolysis. Optik 127, 2653–2658 (2016)ADSCrossRefGoogle Scholar
  2. Ali, S.M., Hussain, S.T., Bakar, S.A., Muhammad, J., Rehman, N.: Effect of doping on the structural and optical properties of SnO2 thin films fabricated by aerosol assisted chemical vapor deposition. J. Phys. Conf. Ser. 439, 1–10 (2013)CrossRefGoogle Scholar
  3. Bagheri-Mohagheghi, M.M., Shokooh-Saremi, M.: Electrical, optical and structural properties of Li-doped SnO2 transparent conducting films deposited by the spray pyrolysis technique: a carrier-type conversion study. Semicond. Sci. Technol. 19, 764–769 (2004)ADSCrossRefGoogle Scholar
  4. Bhardwaj, N., Pandey, A., Mohapatra, S.: Effects of MeV heavy ion irradiation on structural, morphological and optical properties of nanostructured SnO2 thin films prepared by thermal evaporation. J. Alloys Compd. 656, 647–653 (2016)CrossRefGoogle Scholar
  5. Bolzan, A.A., Fong, C., Kennedy, B.J., Howard, C.J.: Structural studies of rutile-type metal dioxides. Acta Crystallogr. B 53, 373–380 (1997)CrossRefGoogle Scholar
  6. Chen, Z., Tian, Y., Li, S., Zheng, H., Zhang, W.: Electrodeposition of arborous structure nanocrystalline SnO2 and application in flexible dye-sensitized solar cells. J. Alloys Compd. 515, 57–62 (2012)CrossRefGoogle Scholar
  7. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)ADSCrossRefGoogle Scholar
  8. Ghodsi, F.E., Mazloom, J.: Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol–gel process. Appl. Phys. A 108, 693–700 (2012)ADSCrossRefGoogle Scholar
  9. He, H., Xie, Z., Li, Q., Niu, H.: On the possibility of p-type doping of SnO2 with Mg: a first-principles study. Comput. Mater. Sci. 101, 62–65 (2015)CrossRefGoogle Scholar
  10. Jin, E.M., Park, J.Y., Gu, H.B., Jeong, S.M.: Synthesis of SnO2 hollow fiber using kapok biotemplate for application in dye-sensitized solar cells. Mater. Lett. 159, 321–324 (2015)CrossRefGoogle Scholar
  11. Kathirvelu, S., D’Souza, L., Dhurai, B.: UV protection finishing of textiles using ZnO nanoparticles. Indian J. Fibre Text. Res. 34, 267–273 (2009)Google Scholar
  12. Köse, H., Karaal, Ş., Aydin, A.O., Akbulut, H.: Structural properties of size-controlled SnO2 nanopowders produced by sol–gel method. Mater. Sci. Semicond. Process. 38, 404–412 (2015)CrossRefGoogle Scholar
  13. Lee, S.U., Choi, W.S., Hong, B.: Synthesis and characterization of SnO2: Sb film by dc magnetron sputtering method for applications to transparent electrodes. Phys. Scr. 2007, 312 (2007)CrossRefGoogle Scholar
  14. Lekshmy, S.S., Daniel, G.P., Joy, K.: Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications. Appl. Surf. Sci. 274, 95–100 (2013)ADSCrossRefGoogle Scholar
  15. Li, X., Deng, R., Li, Y., Yao, B., Ding, Z., Qin, J., Liang, Q.: Effect of Mg doping on optical and electrical properties of SnO2 thin films: an experiment and first-principles study. Ceram. Int. 42, 5299–5303 (2016)CrossRefGoogle Scholar
  16. Lu, Y.M., Jiang, J., Becker, M., Kramm, B., Chen, L., Polity, A., He, Y.B., Klar, P.J., Meyer, B.K.: Polycrystalline SnO2 films grown by chemical vapor deposition on quartz glass. Vacuum 122, 347–352 (2015)ADSCrossRefGoogle Scholar
  17. Nasr, B., Dasgupta, S., Wang, D., Mechau, N., Kruk, R., Hahn, H.: Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries. J. Appl. Phys. 108, 103721 (2010)ADSCrossRefGoogle Scholar
  18. Nassiri, C., Hadri, A., Chafi, F.Z., Loghmarti, M., El Ammari, L., Mzerd, A.: Structural, electrical and optical properties of SnO2 deposited by spray pyrolysis technique. Phys. Chem. News 72, 11–14 (2014)Google Scholar
  19. Pan, S.S., Yu, S.F., Zhang, Y.X., Luo, Y.Y., Wang, S., Xu, J.M., Li, G.H.: Crystallite size-modulated exciton emission in SnO2 nanocrystalline films grown by sputtering. J. Appl. Phys. 113, 143104–143107 (2013)ADSCrossRefGoogle Scholar
  20. Reddy, A.S., Figueiredo, N.M., Cavaleiro, A.: Pulsed direct current magnetron sputtered nanocrystalline tin oxide films. Appl. Surf. Sci. 258, 8902–8907 (2012)ADSCrossRefGoogle Scholar
  21. Saadeddin, I., Pecquenard, B., Manaud, J.P., Decourt, R., Labrugère, C., Buffeteau, T., Campet, G.: Synthesis and characterization of single- and co-doped SnO2 thin films for optoelectronic applications. Appl. Surf. Sci. 253, 5240–5249 (2007)ADSCrossRefGoogle Scholar
  22. Selvi, N., Sankar, S., Dinakaran, K.: Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications. Superlattices Microstruct. 76, 277–287 (2014)ADSCrossRefGoogle Scholar
  23. Shajira, P.S., Bushiri, M.J., Nair, B.B., Prabhu, V.G.: Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method. J. Lumin. 145, 425–429 (2014)CrossRefGoogle Scholar
  24. Thomas, B., Skariah, B.: Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloys Compd. 625, 231–240 (2015)CrossRefGoogle Scholar
  25. Tosun, B.S., Feist, R.K., Gunawan, A., Mkhoyan, K.A., Campbell, S.A., Aydil, E.S.: Sputter deposition of semicrystalline tin dioxide films. Thin Solid Films 520, 2554–2561 (2012)ADSCrossRefGoogle Scholar
  26. Turgut, G., Thirumurugan, K., Ravichandran, K.: Investigations on the crystalline, topographic, electrical and optical characteristics of doubly doped (Si + F) SnO2 films deposited using spray pyrolysis technique. Superlattices Microstruct. 86, 186–197 (2015)ADSCrossRefGoogle Scholar
  27. Vadivel, S., Rajarajan, G.: Effect of Mg doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J. Mater. Sci.: Mater. Electron. 26, 3155–3162 (2015)Google Scholar
  28. Vosko, S.H., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980)ADSCrossRefGoogle Scholar
  29. Wu, P., Zhou, B., Zhou, W.: Room-temperature ferromagnetism in epitaxial Mg-doped SnO2 thin films. Appl. Phys. Lett. 100, 182405–182408 (2012)ADSCrossRefGoogle Scholar
  30. Xu, B., Ren, X.G., Gu, G.R., Lan, L.L., Wu, B.J.: Structural and optical properties of Zn-doped SnO2 films prepared by DC and RF magnetron co-sputtering. Superlattices Microstruct. 89, 34–42 (2016)ADSCrossRefGoogle Scholar
  31. Yang, F., Guo, Z.: Tuning SnO2 architectures with unitary or composite microstructure for the application of gas sensors. J. Colloid Interface Sci. 462, 140–147 (2016)CrossRefGoogle Scholar
  32. Zhou, H., Deng, R., Li, Y.F., Yao, B., Ding, Z.H., Wang, Q.X., Han, Y., Wu, T., Liu, L.: Wavelength-tuned light emission via modifying the band edge symmetry: doped SnO2 as an example realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. J. Phys. Chem. C 118, 6365–6371 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Rouchdi
    • 1
  • E. Salmani
    • 2
  • A. El hat
    • 1
  • C. Nassiri
    • 1
  • N. Hassanain
    • 1
  • A. Mzerd
    • 1
  1. 1.Materials Physics Laboratory, Faculty of SciencesMohammed V UniversityRabatMorocco
  2. 2.LMPHE, Faculty of SciencesMohammed V UniversityRabatMorocco

Personalised recommendations