Theoretical conversion of the hypergeometric-Gaussian beams family into a high-order spiraling Bessel beams by a curved fork-shaped hologram

  • A. A. A. Ebrahim
  • F. Saad
  • L. Ez-zariy
  • A. Belafhal
Article

Abstract

Based on the process of the Fresnel diffraction, the possibility of generating a new type of laser beams family by illuminating a curved fork-shaped hologram, with an input hypergeometric-Gaussian beams family of orders n and m is studied in this paper. The theoretical and the numerical results showed that, at the output plane, a high order spiraling Bessel vortex beam is produced. This vortex beam is divergence or non-divergence depending upon the waist position of the input hypergeometric-Gaussian beams, regarding the plane where the curved fork-shaped hologram is situated. Analytical expressions of the amplitude and the intensity distribution of the diffracted wave field are calculated and deduced using the stationary phase method. The actual work generalizes also the Fresnel diffraction study of some subfamilies of the hypergeometric-Gaussian beams family, such as: fundamental Gaussian, hollow Gaussian, modified quadratic Bessel–Gaussian and elegant Laguerre–Gaussian beams.

Keywords

Fresnel diffraction Hypergeometric-Gaussian beams family Spiraling Bessel beams Curved fork-shaped hologram 

Notes

Acknowledgements

The first and second authors were supported by the Ministry of higher Education and Scientific Research and the Ministry of Education of Yemen.

References

  1. Arlt, J., Garcez-Chavez, V., Sibbett, W., Dholakia, K.: Optical micromanipulation using Bessel light beam. Opt. Commun. 197, 239–245 (2001)ADSCrossRefGoogle Scholar
  2. Bazhenov, V.Y., Vasnetsov, M.V., Soskin, M.S.: Laser beams with screw dislocation in their wavefronts. Pis’ma Zh. Eksp. Teor. Fiz 52, 1037–1039 (1990)ADSGoogle Scholar
  3. Beijersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M., Woerdman, J.P.: Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994)ADSCrossRefGoogle Scholar
  4. Bekshaev, A., Orlinska, O., Vasnetsov, M.: Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Opt. Commun. 283, 2006–2016 (2010)ADSCrossRefGoogle Scholar
  5. Berry, M.V.: Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A: Pure Appl. Opt. 6, 259–268 (2004)ADSCrossRefGoogle Scholar
  6. Buchholz, H.: The Confluent Hypergeometric Function with Special Emphasis on its Applications. Springer, New York (1969)CrossRefMATHGoogle Scholar
  7. Carpentier, A.V., Michinel, H., Salgueiro, J.R., Olivieri, D.: Making optical vortices with computer-generated holograms. Am. J. Phys. 76, 916–921 (2008)ADSCrossRefGoogle Scholar
  8. Chen, J., Wang, G., Xu, Q.: Production of confluent hypergeometric beam by computer-generated hologram. Opt. Eng. 50, 024201–024205 (2011)ADSCrossRefGoogle Scholar
  9. Ebrahim, A.A.A., Khannous, F., Chafiq, A., Belafhal, A.: Theoretical investigation of propagation characteristics of hypergeometric-Gaussian beams type-II through an ABCD optical system with an annular aperture. Int. J. Photonics Opt. Technol. 2, 18–24 (2016)Google Scholar
  10. Ebrahim, A.A.A., Khannous, F., Nebdi, H., Chafiq, A., Belafhal, A.: Generalized M2-factor of hard-edged diffracted hypergeometric-Gaussian type-II beams. Phys. Chem. News 73, 50–57 (2014)Google Scholar
  11. Erdelyi, A., Magnus, W., Oberhettinger, F.: Tables of Integral Transforms. McGraw-Hill, New York (1954)MATHGoogle Scholar
  12. Ez-zariy, L., Belafhal, A.: The conversion of a Li’s flat-topped-Gaussian beam to a superposition of Kummer dark hollow beam by the illumination of a fractional radial Hilbert transform system. Opt. Quantum Electron. 48, 331–344 (2016)CrossRefGoogle Scholar
  13. Ez-zariy, L., Khannous, F., Nebdi, H., Khouilid, M., Belafhal, A.: Generation of new doughnut beams from Li’s flattened Gaussian beams. J. Optoelectron. Adv. Mater. 15, 1188–1199 (2013)Google Scholar
  14. Ge, S.Q., Ya, Z.K., Yu, F.G., Jun, L.Z., Tian, L.S.: Generalization and propagation of spiraling Bessel beams with a helical axicon. Chin. Phys. B 21, 014208–014218 (2012)ADSCrossRefGoogle Scholar
  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Elsevier, Amsterdam (2007)MATHGoogle Scholar
  16. He, H., Heckenberg, N.R., Rubinsztein-Dunlop, H.: Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. J. Mod. Opt. 42, 217–223 (1995)ADSCrossRefGoogle Scholar
  17. Heckenberg, N.R., Mcduff, R., Smith, C.P., Rubinsztein-Dunlop, H., Wegener, M.J.: Laser beams with phase singularities. Opt. Quantum Electron. 24, S951–S962 (1992)CrossRefGoogle Scholar
  18. Janicijevic, L., Topuzoski, S.: Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings. J. Opt. Soc. Am. A 25, 2659–2669 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. Jarutis, V., Matijošius, A., Trapani, P.D., Piskarskas, A.: Spiraling zero-order Bessel beam. Opt. Lett. 34, 2129–2131 (2009)ADSCrossRefGoogle Scholar
  20. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L., Santamato, E.: Hypergeometric-Gaussian modes. Opt. Lett. 21, 3053–3055 (2007a)ADSCrossRefGoogle Scholar
  21. Karimi, E., Piccirillo, B., Marrucci, L., Santamato, E.: Improved focusing with hypergeometric-Gaussian type-II optical modes. Opt. Express. 16, 21069–21075 (2007b)ADSCrossRefGoogle Scholar
  22. Khannous, F., Ebrahim, A.A.A., Belafhal, A.: A closed form of kurtosis parameter of hypergeometric-Gaussian type-II beam. Chin. Phys. B 25, 044206–044213 (2016)CrossRefGoogle Scholar
  23. Khonina, S.N., Kotlyar, V.V., Shinkaryev, M.V., Soifer, V.A., Uspleniev, G.V.: The phase rotor filter. J. Mod. Opt. 39, 1147–1154 (1992a)ADSCrossRefGoogle Scholar
  24. Khonina, S.N., Kotlyar, V.V., Soifer, V.A., Shinkaryev, M.V., Uspleniev, G.V.: Trochoson. Opt. Commun. 91, 158–162 (1992b)ADSCrossRefGoogle Scholar
  25. Kotlyar, V.V., Kovalev, A.A., Nalimov, A.G.: Propagation of hypergeometric laser beams in a medium with a parabolic refractive index. J. Opt. 15, 125706–125716 (2013)ADSCrossRefGoogle Scholar
  26. Kotlyar, V.V., Kovalev, A.A., Soifer, V.A., Tuvey, C.S., Davis, J.A.: Sidelobe contrast reduction for optical vortex beams using a helical axicon. Opt. Lett. 32, 921–923 (2007)ADSCrossRefGoogle Scholar
  27. Lee, W.M., Yuan, X.-C., Cheong, W.C.: Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett. 29, 1796–1798 (2004)ADSCrossRefGoogle Scholar
  28. Li, J., Chen, Y.: Propagation of confluent hypergeometric beam through uniaxial crystals orthogonal to the optical axis. Opt. Laser Technol. 44, 1603–1610 (2012)ADSCrossRefGoogle Scholar
  29. Luo, D., Kuang, C., Hao, X., Liu, X.: High-precision laser alignment technique based on spiral phase plate. Opt. Lasers Eng. 50, 944–949 (2012)CrossRefGoogle Scholar
  30. Machavariani, G., Davidson, N., Hasman, E., Blit, S., Ishaaya, A.A., Friesem, A.A.: Efficient conversion of a Gaussian beam to a high purity helical beam. Opt. Commun. 209, 265–271 (2002)ADSCrossRefGoogle Scholar
  31. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature. 412, 313–316 (2001)ADSCrossRefGoogle Scholar
  32. Massari, M., Ruffato, G., Gintoli, M., Ricci, F., Romanato, F.: Fabrication and characterization of high-quality spiral phase plates for optical applications. Appl. Opt. 54, 4077–4083 (2015)ADSCrossRefGoogle Scholar
  33. McGloin, D., Dholakia, K.: Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005)ADSCrossRefGoogle Scholar
  34. Paterson, C., Smith, R.: Higher-order Bessel waves produced by axicon-type computer-generated holograms. Opt. Commun. 124, 121–130 (1996)ADSCrossRefGoogle Scholar
  35. Qu, J., Fang, M., Peng, J., Huang, W.: The fractional Fourier transform of hypergeometric-Gauss beams through the hard edge aperture. Prog. Electromagn. Res. M 43, 31–38 (2015)CrossRefGoogle Scholar
  36. Saad, F., El Halba, E.M., Belafhal, A.: Generation of generalized spiraling Bessel beams of arbitrary order by curved fork-shaped holograms. Opt. Quantum Electron. 48, 454–466 (2016)CrossRefGoogle Scholar
  37. Stoyanov, L., Topuzoski, S., Stefanov, I., Janicijevic, L., Dreischuh, A.: Far field diffraction of an optical vortex beam by a fork-shaped grating. Opt. Commun. 350, 301–308 (2015)ADSCrossRefGoogle Scholar
  38. Tang, B., Jiang, C., Zhu, H.: Fractional Fourier transform for confluent hypergeometric beams. Phys. Lett. A 376, 2627–2631 (2012)ADSCrossRefGoogle Scholar
  39. Topuzoski, S.: Fraunhofer diffraction of Laguerre–Gaussian laser beam by helical axicon. Opt. Commun. 330, 184–190 (2014)ADSCrossRefGoogle Scholar
  40. Topuzoski, S.: Generation of optical vortices with curved fork-shaped hologram. Opt. Quantum Electron. 48, 138–144 (2016)CrossRefGoogle Scholar
  41. Topuzoski, S., Janicijevi, L.: Conversion of high-order Laguerre–Gaussian beams into Bessel beams of increased, reduced or zeroth order by use of a helical axicon. Opt. Commun. 282, 3426–3432 (2009)ADSCrossRefGoogle Scholar
  42. Vasara, A., Turunen, J., Friberg, A.T.: Realization of general nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am. A 6, 1748–1754 (1989)ADSCrossRefGoogle Scholar
  43. Xia, Y., Yin, J.: Generation of a focused hollow beam by an 2π-phase plate and its application in atom or molecule optics. J. Opt. Soc. Am. B 22, 529–536 (2005)ADSCrossRefGoogle Scholar
  44. Xie, Q., Zhao, D.: Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams. Opt. Commun. 281, 7–11 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. A. A. Ebrahim
    • 1
  • F. Saad
    • 1
  • L. Ez-zariy
    • 1
  • A. Belafhal
    • 1
  1. 1.Laboratory of Nuclear, Atomic and Molecular Physics, Department of Physics, Faculty of SciencesChouaïb Doukkali UniversityEl JadidaMorocco

Personalised recommendations