GaN nanocones field emitters with the selenium doping



The pure and selenium (Se)-doped GaN nanocones were grown via a vapor–liquid–solid (VLS) mechanism with Pt catalysts. The diameter of GaN nanocones gradually decreases from ~500 to ~100 nm along the wire axis,and the tips of GaN nanocones change to thin with sharp ends. The Se-doped GaN nanocones have exhibited impressive field emission properties and high stability with a lower turn-on field of 2.75 V/µm (at room temperature), which is lower than pure GaN nanocones (5.53 V/μm). Consequently, the incorporation of Se impurities can improve the field emission performance of GaN nanocones, which is sufficient for application in field electron emission devices and cold electron sources in display devices. Moreover, the synthesized Se-doped GaN nanocones will facilitate flexible design of device architectures for nanoelectronics.


Nanocomposite Electrical properties GaN Functional applications 



This work was supported by the National Natural Science Foundation of China (No. 51042010), the Natural Science Key Project Foundation of Shaanxi Province, China (No. 2013JZ018).


  1. Chen, C.C., Yeh, C.C., Chen, C.H., Yu, M.Y., Liu, H.L., Wu, J.J., Chen, K.H., Chen, L.C., Peng, J.Y., Chen, Y.F.: Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791–2798 (2001)CrossRefGoogle Scholar
  2. Chen, Z., Cao, C.B., Li, W.S., Surya, C.: Well-aligned single-crystalline GaN nanocolumns and their field emission properties. Cryst. Growth Des. 9, 792–796 (2009)CrossRefGoogle Scholar
  3. Choi, H.J., Johnson, J.C., He, R.R., Lee, S.K., Kim, F., Pauzauskie, P., Goldberger, J., Saykally, R.J., Yang, P.D.: Self-organized GaN quantum wire UV lasers. J. Phys. Chem. B 107, 8721–8725 (2003)CrossRefGoogle Scholar
  4. Cui, J.S., Xiao, H.D., Liu, J.Q., Luan, C.N., Ji, Z.W., Pei, H.Y.: Morphology and growth mechanism of gallium nitride nanotowers synthesized by metal–organic chemical vapor deposition. J. Alloy. Compd. 563, 72–76 (2013)CrossRefGoogle Scholar
  5. Cui, Z., Li, E.L., Shi, W., Ma, D.M.: Optical and field emission properties of layer-structure GaN nanowires. Mater. Res. Bull. 56, 80–85 (2014)CrossRefGoogle Scholar
  6. Cui, Z., Li, E.L., Shi, W., Ma, D.M., Liu, T., Liu, X., Wu, G.S.: Growth and field emission properties of GaN nanopencils. Ceram. Int. 41, 6074–6078 (2015)CrossRefGoogle Scholar
  7. Cui, Z., Ke, X., Li, E., Liu, T.: Electronic and optical properties of titanium-doped GaN nanowires. Mater. Des. 96, 409–415 (2016)CrossRefGoogle Scholar
  8. Dinh, D.V., Kang, S.M., Yang, J.H., Kim, S.W., Yoon, D.H.: Synthesis and field emission properties of triangular-shaped GaN nanowires on Si (100) substrates. J. Cryst. Growth 311, 495–499 (2009)ADSCrossRefGoogle Scholar
  9. Fu, L.T., Chen, Z.G., Wang, D.W., Cheng, L., Xu, H.Y., Liu, J.Z., Cong, H.T., Lu, G.Q., Zou, J.: Wurtzite P-doped GaN triangular microtubes as field emitters. J. Phys. Chem. C 114, 9627–9633 (2010)CrossRefGoogle Scholar
  10. Ha, B.C., Seo, S.H., Cho, J.H., Yoon, C.S., Yoo, J., Yi, G.C., Park, C.Y., Lee, C.J.: Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B. 109, 11095–11099 (2005)CrossRefGoogle Scholar
  11. Johnson, J.C., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P., Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106–110 (2002)ADSCrossRefGoogle Scholar
  12. Li, E.L., Cui, Z., Dai, Y.B., Zhao, D.N., Zhao, T.: Synthesis and field emission properties of GaN nanowires. Appl. Surf. Sci. 257, 10850–10854 (2011)ADSGoogle Scholar
  13. Li, E.L., Zhao, T., Zhao, D.N., Cui, Z., Liu, M.C.: Study of the synthesis and field emission properties of one-dimensional GaN nanostructures. Surf. Rev. Lett. 19, 1250011 (2012)CrossRefGoogle Scholar
  14. Li, E.L., Song, S., Ma, D.M., Fu, N., Zhang, Y.: Synthesis and field emission properties of helical GaN nanowires. J. Electron. Mater. 43(5), 1379–1383 (2014)ADSCrossRefGoogle Scholar
  15. Li, E.L., Cui, Z., Fu, N., Xu, R., Ma, D.M.: Growth and field emission of single-crystalline GaN nanowire with ropy morphology. Mater. Lett. 15, 426–428 (2015)CrossRefGoogle Scholar
  16. Li, E., Sun, L., Cui, Z., Ma, D., Shi, W., Wang, X.: Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures. Appl. Phys. Lett. 109(15), 153112 (2016a)ADSCrossRefGoogle Scholar
  17. Li, E., Wu, G., Cui, Z., Ma, D., Shi, W., Wang, X.: Enhancing the field emission properties of Se-doped GaN nanowires. Nanotechnol 27(26), 265707 (2016b)ADSCrossRefGoogle Scholar
  18. Lin, C.T., Yu, G.H., Wang, X.Z., Cao, M.X., Lu, H.F., Gong, H., Qi, M., Li, Z.: Catalyst-free growth of well vertically aligned GaN needlelike nanowire array with low-field electron emission properties. J. Phys. Chem. C 112, 18821–18824 (2008)CrossRefGoogle Scholar
  19. Liu, B.D., Bando, Y., Tang, C.C., Xu, F.F., Hu, Q., Golberg, D.: Needlelike bicrystalline GaN nanowires with excellent field emission properties. J. Phys. Chem. B 109, 17082–17085 (2005)CrossRefGoogle Scholar
  20. Luo, L., Yu, K., Zhu, Z., Zhan, Y.G., Ma, H., Xue, C., Yang, Y., Chen, S.: Field emission from GaN nanobelts with herringbone morphology. Mater. Lett. 58, 2893–2896 (2004)CrossRefGoogle Scholar
  21. Nabi, G., Cao, C.B., Khan, W.S., Hussain, S., Usman, Z., Khattak, N.A.D., Ail, Z., Butt, F.K., Shah, S.H., Safdar, M.: Preparation of grass-like GaN nanostructures: its PL and excellent field emission properties. Mater. Lett. 66, 50–53 (2011)CrossRefGoogle Scholar
  22. Nabi, G., Cao, C.B., Hussain, S., Khan, W.S., Sagar, R.R., Ali, Z., Butt, F.K., Usman, Z., Yu, P.: Synthesis, photoluminescence and field emission properties of well aligned/well patterned conical shape GaN nanorods. Cryst. Eng. Commun. 14, 8492–8498 (2012)CrossRefGoogle Scholar
  23. Ng, D.K., Hong, M.H., Tan, L.S., Zhu, Y.W., Sow, C.H.: Field emission enhancement from patterned gallium nitride nanowires. Nanotechnol 18(37), 375707 (2007)CrossRefGoogle Scholar
  24. Ng, D.K., Hong, M.H., Tan, L.S., Zhu, Y.W., Sow, H.: PLD synthesis of GaN nanowires and nanodots on patterned catalyst surface for field emission study. Appl. Phys. A 93, 685–689 (2008)ADSCrossRefGoogle Scholar
  25. Qian, F., Gradecak, S., Li, Y., Wen, C.Y., Lieber, C.M.: Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005)ADSCrossRefGoogle Scholar
  26. Tang, C.C., Xu, X.W., Hu, L., Li, Y.X.: Improving field emission properties of GaN nanowires by oxide coating. Appl. Phys. Lett. 94(24), 3105–3107 (2009)CrossRefGoogle Scholar
  27. Xiang, X., Zhu, H.: One-dimensional gallium nitride micro/nanostructures synthesized by a space-confined growth technique. Appl. Phys. A Mater. Sci. Process. 87, 651–659 (2007)ADSCrossRefGoogle Scholar
  28. Yoshida, H., Urushido, T., Miyake, H., Hiramatsu, K.: Formation of GaN self-organized nanotips by reactive ion etching. J. Appl. Phys. Part 2 Lett. 40, 1301–1304 (2001)CrossRefGoogle Scholar
  29. Zhang, Y., Cui, Z., Ding, Y., Liu, T.: Density functional theories study on optoelectronic properties of arsenic-doped GaN nanowires. Opt. Quant. Electron. 48(12), 548 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Automation and Information EngineeringXi’an University of TechnologyXi’anPeople’s Republic of China

Personalised recommendations