Photocurrent enhancement of heat treated CdSe-sensitized titania nanotube photoelectrode

  • Asmaa Kadim Ayal
  • Zulkarnain Zainal
  • Hong-Ngee Lim
  • Zainal Abidin Talib
  • Ying-Chin Lim
  • Sook-Keng Chang
  • Araa Mebdir Holi


The self-organized titania nanotube arrays (NTAs) fabricated by anodisation has gained enormous interest due to its high spatial orientation, excellent charge transfer structure, and large internal surface area; all are crucial properties influencing the absorption and propagation of light. In this study, a composite material, CdSe nanoparticle/TiO2 nanotube arrays (CdSe/TiO2 NTAs) were assembled through the insertion of CdSe nanoparticles onto the anodized TiO2 nanotube arrays via electrochemical deposition. The annealing temperature of CdSe/TiO2 NTAs was varied from 200 to 350 °C and was found to play an important role in controlling the formation of CdSe nanoparticles on TiO2 NTAs. Characterizations of the films were performed by using field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, high resolution transmission electron microscopes, X-ray diffractometry and UV–visible diffuse reflectance spectroscopy. The transient photocurrent was examined in a three-electrode system under halogen illumination by using the prepared film as the photoanode. It was found that the CdSe nanoparticles were susceptible to spread through electrochemical deposition and formed on the nanotubes by annealing in nitrogen atmosphere. The increment in annealing temperature has resulted in greater amount of CdSe loaded onto TiO2 nanotube arrays. Therefore, a suitable annealing temperature can enhance the particle interaction, leading to considerable improvement in PEC performance. The sensitized CdSe/TiO2 NTAs annealed at 250 °C displayed 84 folds improvement in photoconversion efficiency than that of bare TiO2 NTAs counterparts.


Heat-treated Electrochemical deposition CdSe TiO2 nanotube Photoelectrochemical Photoconversion efficiency 



We thank the Ministry of Higher Education Malaysia and the Ministry of Higher Education & Scientific Research of Iraq for financial support to Asmaa Kadim Ayal. Special thanks are extended to Department of Chemistry and Department of Physics, Faculty of Science, Universiti Putra Malaysia, and Microscopy Unit, Institute of Bioscience, Universiti Putra Malaysia.


  1. Ayal, A.K., Zainal, Z., Lim, H.-N., Talib, Z.A., Lim, Y.-C., Chang, S.-K., Samsudin, N.A., Holi, A.M., Amin, W.N.M.: Electrochemical deposition of CdSe-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance for solar cell application. J. Mater. Sci. Mater. Electron. 27, 5204–5210 (2016)CrossRefGoogle Scholar
  2. Bang, J.H., Kamat, P.V.: Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv. Funct. Mater. 20, 1970–1976 (2010)CrossRefGoogle Scholar
  3. Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T.L., Yates, J.T.: Light-induced charge separation in anatase TiO2 particles. J. Phys. Chem. B. 109, 6061–6068 (2005)CrossRefGoogle Scholar
  4. Brown, P., Takechi, K., Kamat, P.V.: Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J. Phys. Chem. C 112, 4776–4782 (2008)CrossRefGoogle Scholar
  5. Chen, C., Xie, Y., Ali, G., Yoo, S.H., Cho, S.O.: Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer. Nanoscale Res. Lett. 6, 1–9 (2011)ADSGoogle Scholar
  6. Chi, C., Liau, S., Lee, Y.: The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical. Nanotechnology 21, 025202–025208 (2010)ADSCrossRefGoogle Scholar
  7. Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn, pp. 78–103. Addison Wesley, Boston (1987)Google Scholar
  8. Fitzmorris, R.C., Larsen, G., Wheeler, D.A., Zhao, Y., Zhang, J.Z.: Ultrafast charge transfer dynamics in Polycrystalline CdSe/TiO2 nanorods prepared by oblique angle co-deposition ultrafast charge transfer dynamics in polycrystalline CdSe/TiO2 nanorods prepared by oblique angle co-deposition. J. Phys. Chem. C 116, 5033–5041 (2012)CrossRefGoogle Scholar
  9. Gan, J., Zhai, T., Lu, X., Xie, S., Mao, Y., Tong, Y.: Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs. Mater. Res. Bull. 47, 580–585 (2012)CrossRefGoogle Scholar
  10. Goodey, A.P., Eichfeld, S.M., Lew, K.-K., Redwing, J.M., Mallouk, T.E.: Silicon nanowire array photelectrochemical cells. J. Am. Chem. Soc. 129, 12344–12345 (2007)CrossRefGoogle Scholar
  11. Hensel, J., Wang, G., Li, Y., Zhang, J.Z.: Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett. 10, 478–483 (2010)ADSCrossRefGoogle Scholar
  12. Hossain, M.F., Biswas, S., Zhang, Z.H., Takahashi, T.: Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. J. Photochem. Photobiol. A Chem. 217, 68–75 (2011)CrossRefGoogle Scholar
  13. Hu, X., Li, G., Yu, J.C.: Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26, 3031–3039 (2010)CrossRefGoogle Scholar
  14. Huang, J., Zhang, K., Lai, Y.: Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review. Int. J. Photoenergy 2013, 1–19 (2013)Google Scholar
  15. Ikram, A., Sahai, S., Rai, S., Dass, S., Shrivastav, R., Satsangi, V.R.: Synergistic effect of CdSe quantum dots on photoelectrochemical response of electrodeposited α-Fe2O3 films. J. Power Sources 267, 664–672 (2014)ADSCrossRefGoogle Scholar
  16. Kathirvel, S., Su, C., Hsu, C., Ho, S.Y., Chen, B.R., Li, W.R.: Effect of open- and close-ended TiO2 nanotube arrays on transparent conducting substrates for dye-sensitized solar cells application. J. Nanoparticle Res. 16, 1–14 (2014)CrossRefGoogle Scholar
  17. Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V.: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRefGoogle Scholar
  18. Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  19. Lana-Villarreal, T., Shen, Q., Toyoda, T., Go, R., Guijarro, N.: Go mez, R., Gomez, R.: sensitization of Titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photoelectrochemical and carrier dynamics studies. J. Phys. Chem. C 114, 21928–21937 (2010)CrossRefGoogle Scholar
  20. Larsen, G.K., Fitzmorris, B.C., Longo, C., Zhang, J.Z., Zhao, Y.: Nanostructured homogenous CdSe–TiO2 composite visible light photoanodes fabricated by oblique angle codeposition. J. Mater. Chem. 22, 14205–14218 (2012)CrossRefGoogle Scholar
  21. Leschkies, K.S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J.E., Carter, C.B., Kortshagen, U.R., Norris, D.J., Aydil, E.S.: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)ADSCrossRefGoogle Scholar
  22. Li, X., Teng, W., Zhao, Q., Wang, L.: Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays. J. Nanoparticle Res. 13, 6813–6820 (2011)ADSCrossRefGoogle Scholar
  23. Lim, Y.C., Zainal, Z., Hussein, M.Z., Tan, W.T.: Preparation and Characterization of Nanostructured TiO2 via Electrochemical Anodization in Aqueous Ammonium Fluoride. Malays. J. Chem. 11, 129–135 (2009)Google Scholar
  24. Lim, Y.C., Zainal, Z., Hussein, M.Z., Tee, T.W.: Investigation on optical and photoelectrochemical properties of self-assembled titania nanotube arrays prepared by anodization. Malays. J. Anal. Sci. 20, 121–130 (2016)CrossRefGoogle Scholar
  25. Liu, L., Hensel, J., Fitzmorris, R.C., Li, Y., Zhang, J.Z.: Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures. J. Phys. Chem. Lett. 1, 155–160 (2010)CrossRefGoogle Scholar
  26. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)CrossRefGoogle Scholar
  27. Osterloh, F.E.: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013)CrossRefGoogle Scholar
  28. Robel, I., Subramanian, V., Kuno, M., Kamat, P.: V: quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)CrossRefGoogle Scholar
  29. Roy, P., Berger, S., Schmuki, P.: TiO2 nanotubes: synthesis and applications. Angew. Chemie Int. Ed. 50, 2904–2939 (2011)CrossRefGoogle Scholar
  30. Tvrdy, K., Frantsuzov, P.A., Kamat, P.V.: Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. 108, 29–34 (2011)ADSCrossRefGoogle Scholar
  31. Tvrdy, K., Kamat, P.: V: substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces. J. Phys. Chem. A 113, 3765–3772 (2009)CrossRefGoogle Scholar
  32. Wang, H., Wang, G., Ling, Y., Lepert, M., Wang, C., Zhang, J.Z., Li, Y.: Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4, 1463–1466 (2012)ADSCrossRefGoogle Scholar
  33. Xiao, F.-X., Miao, J., Wang, H.-Y., Yang, H., Chen, J., Liu, B.: Electrochemical construction of hierarchically ordered CdSe-sensitized TiO2 nanotube arrays: towards versatile photoelectrochemical water splitting and photoredox applications. Nanoscale 6, 6727–6737 (2014)ADSCrossRefGoogle Scholar
  34. Yang, H., Fan, W., Vaneski, A., Susha, A.S., Teoh, W.Y., Rogach, A.L.: Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater. 22, 2821–2829 (2012)CrossRefGoogle Scholar
  35. Zamfirescu, C., Naterer, G.F., Dincer, I.: Water splitting with a dual photo-electrochemical cell and hybridcatalysis for enhanced solar energy utilization. Int. J. Energy Res. 37, 1175–1186 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Asmaa Kadim Ayal
    • 1
    • 2
  • Zulkarnain Zainal
    • 1
    • 3
  • Hong-Ngee Lim
    • 1
    • 4
  • Zainal Abidin Talib
    • 5
  • Ying-Chin Lim
    • 6
  • Sook-Keng Chang
    • 1
    • 3
  • Araa Mebdir Holi
    • 1
    • 3
    • 7
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Chemistry, College of Science for WomenBaghdad UniversityBaghdadIraq
  3. 3.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Functional Devices Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  6. 6.School of Chemistry and Environment, Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  7. 7.Department of Physics, College of EducationAl-Qadisiyah UniversityAl DiwaniyahIraq

Personalised recommendations