Eigenmodes of finite length silicon-on-insulator microring resonator arrays

  • B. Radjenović
  • M. Radmilović-Radjenović
  • P. Beličev


In this paper the eigenmodes of finite length microring resonator arrays have been systematically studied, both analytically using temporal coupled mode theory (CMT), and numerically using two-dimensional finite element method (FEM). The method for obtaining the values of parameters appearing in simplified CMT model using results of FEM calculations is presented. Calculations were carried out by COMSOL FEM packages for a wide range of distances between the rings. The obtained results reveal that the rotational degeneracy is preserved for a wide range of interrings distances. It is shown how the eigenvalue spectrum depends on the number of cavities in the system. The differences for the cases of odd and even numbers of rings, and its implications on actual applications, are discussed in details. The central branch appearing in odd-number arrays plays significant role for the delay-lines and optical buffering applications. Based on the first order perturbation theory, an analytical expressions for the eigenfrequencies of arbitrary (finite) length linear array of microring resonators are derived. The analytical expressions describing eigenfrequencies are useful for determining positions of the maxima in transfer characteristics in microring arrays with external buses.


Microring Photonics Eigenmodes 



The work has also been carried out under Ministry of Education and Science Republic of Serbia O171037 and 151005B projects.


  1. Bayer, M., Gutbrod, T., Reithmaier, J.P., Forchel, A.: Optical modes in photonic molecules. Phys. Rev. Lett. 81, 2583–2585 (1998)ADSCrossRefGoogle Scholar
  2. Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012)CrossRefGoogle Scholar
  3. Boriskina, S.V.: Photonic molecules and spectral engineering. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds.) Photonic Microresonator Research and Applications. Springer, New York (2010)Google Scholar
  5. Chakravarty, S., Bhattacharya, P., Topol’ančik, J., Wu, Z.: Electrically injected quantum dot photonic crystal microcavity light emitters and microcavity arrays. J. Phys. D Appl. Phys. 40, 2683–2690 (2007)ADSCrossRefGoogle Scholar
  6. Chen, Y., Blair, S.: Nonlinearity enhancement in finite coupled-resonator slow-light waveguides. Opt. Express 12, 3353–3366 (2004)ADSCrossRefGoogle Scholar
  7. Chremmos, I., Schwelb, O., Uzunoglu, N.: Photonic Microresonator Research and Applications. Springer, New York (2010)CrossRefGoogle Scholar
  8. Chremmos, I., Uzunoglu, N.: Modes of the infinite square lattice of coupled microring resonators. J. Opt. Soc. Am. A 25, 3043–3050 (2008)ADSCrossRefGoogle Scholar
  9. Donzella, V., Sherwali, A., Flueckiger, J., Grist, S.M., Fard, S.T., Chrostowski, L.: Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt. Express 23, 4791–4803 (2015)ADSCrossRefGoogle Scholar
  10. Escalante, J.M., Martnez, A., Laude, V.: Dispersion relation of coupled-resonator acoustic waveguides formed by defect cavities in a phononic crystal. J. Phys. D Appl. Phys. 46, 475301 (2013)ADSCrossRefGoogle Scholar
  11. Feng, S., Lei, T., Chen, H., Cai, H., Luo, X., Poon, A.W.: Silicon photonics—from a microresonator perspective. Laser Photon. Rev. 6, 145–177 (2012)CrossRefGoogle Scholar
  12. Franchimon, E.F., Hiremath, K.R., Stoffer, R., Hammer, M.: Interaction of whispering gallery modes in integrated optical microring or microdisk circuits—hybrid coupled mode theory model. J. Opt. Soc. Am. B 30, 1048–1057 (2013)ADSCrossRefGoogle Scholar
  13. Haus, H.A.: Waves and Fields in Optoelectronics. Prentice-Hall, Englewood Cliffs (1984)Google Scholar
  14. Haus, H.A., Huang, W.: Coupled-mode theory. Proc. IEEE 19, 1505–1518 (1991)CrossRefGoogle Scholar
  15. Li, Q., Wang, T., Yikai, S., Yan, M., Qiu, M.: Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367–8382 (2010)ADSCrossRefGoogle Scholar
  16. Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 9981005 (1997)Google Scholar
  17. Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.P., Kimerling, L.C., Greene, W.: 1998 Ultra-compact \({\rm Si-SiO}\) microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998)Google Scholar
  18. Liu, H.C., Yariv, A.: Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs). Opt. Express 19, 17653–17668 (2011)ADSCrossRefGoogle Scholar
  19. Manolatou, C., Khan, M.J., Fan, S., Villeneuve, P.R., Haus, H.A., Joannopoulos, J.D.: Coupling of Modes Analysis of Resonant Channel Add-Drop Filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999)ADSCrossRefGoogle Scholar
  20. McIsaac, C.P.R.: Symmetry-induced modal characteristics of uniform waveguides—II. Theory. IEEE Trans. Microw. Theory Tech. MTT–23, 429–433 (1975)ADSCrossRefGoogle Scholar
  21. McIsaac, P.R.: Symmetry-induced modal characteristics of uniform waveguides 1: summary of results. IEEE Trans. Microw. Theory Tech. MTT–23, 421–429 (1975)ADSCrossRefGoogle Scholar
  22. Moller, B.M., Woggon, U.: Band formation in coupled-resonator slow-wave structures. Opt. Express 15, 17362–17370 (2007)ADSCrossRefGoogle Scholar
  23. Morichetti, F., Ferrari, C., Canciamilla, A., Melloni, A.: The rst decade of coupled resonator optical waveguides—bringing slow light to applications. Laser Photon. Rev. 6, 74–96 (2012)CrossRefGoogle Scholar
  24. Poon, J.K.S., Scheuer, J., Mookherjea, S., Paloczi, G.T., Huang, Y., Yariv, A.: Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express 12, 90–103 (2004)ADSCrossRefGoogle Scholar
  25. Poon, J.K.S., Scheuer, J., Xu, Y., Yariv, A.: Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21, 1665–1673 (2004)ADSCrossRefGoogle Scholar
  26. Poon, J.K.S., Yariv, A.: Active coupled-resonator optical waveguides. I. Gain enhancement and noise. J. Opt. Soc. Am. B 24, 2378–2388 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. Popović, M.A., Manolatou, C., Watts, M.R.: Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. Opt. Express 14, 1208–1222 (2006)ADSCrossRefGoogle Scholar
  28. Radjenović, B., Radmilović-Radjenović, M.: Excitation of confined modes in silicon slotted waveguides and microring resonators for sensing purposes. IEEE Sens. J. 14, 1412–1417 (2014)CrossRefGoogle Scholar
  29. Smotrova, E.I., Nosich, A.I., Benson, T.M., Sewell, P.: Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006)CrossRefGoogle Scholar
  30. Stefanou, N., Modinos, A.: Impurity bands in photonic insulators. Phys. Rev. B. 57, 12127–12133 (1998)ADSCrossRefGoogle Scholar
  31. Sutton, A.P., Finnis, M.W., Pettifor, D.G., Ohta, Y.: The tight-binding bond model. J. Phys. C Solid State Phys. 21, 35 (1988)ADSCrossRefGoogle Scholar
  32. Xia, F., Šekarić, L., Vlasov, Y.: Ultracompact optical buffers on a chip. Nat. Photon. 1, 65–71 (2007)ADSCrossRefGoogle Scholar
  33. Xiao, S., Khan, M.H., Shen, H., Qi, M.: Silicon-on-insulator microring add-drop filters with free spectral ranges over \({\rm 30\, nm}\). J. Lightwave Technol. 26, 228–236 (2008)ADSCrossRefGoogle Scholar
  34. Yang, Y.D., Huang, Y.Z.: Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators. Phys. Rev. A 76, 023822 (2007)ADSCrossRefGoogle Scholar
  35. Yang, Y.D., Huang, Y.Z.: Mode characteristics and directional emission for square microcavity lasers. J. Phys. D Appl. Phys. 49, 253001 (2016). (18pp)ADSCrossRefGoogle Scholar
  36. Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled resonator optical waveguides: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)ADSCrossRefGoogle Scholar
  37. Yueh, W.C.: Eigenvalues of several tridiagonal matrices. Appl. Math. E Notes 5, 66–74 (2005)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BelgradeZemunSerbia
  2. 2.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations