Symmetric metal nanogratings and horned shape extended pads to enhance light transmission of plasmonic metal-semiconductor-metal photodetector



In this work new plasmonic assisted metal-semiconductor-metal photodetectors are presented. The new devices incorporate symmetric triangular and elliptic gratings, subwavelength slit and metal pads that is extended into the active layer made up of GaAs. Simulations are carried out using the 2-D finite difference time domain method. It is shown that with elliptic nanogratings and optimized horned shape extended metal pads, light transmission through the subwavelength slit of the proposed structure is 17 times that of a plasmonic photodetector consisting of only a subwavelength slit at the middle of the metal contacts with no gratings. It is also demonstrated that the triangular shaped nanogratings fixes the peak transmission around the desired wavelength of 830 nm, while the rectangular and elliptic counterparts red shift the maximum transmission to about 900 nm.


Plasmonic MSM-PD Metal nanogratings Subwavelength slit Optical response 


  1. Abb, M., Wang, Y., Papasimakis, N., De Groot, C., Muskens, O.L.: Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett. 14(1), 346–352 (2013)ADSCrossRefGoogle Scholar
  2. Aksyuk, V.A.: Design and modeling of an ultra-compact 2 × 2 nanomechanical plasmonic switch. Opt. Express 23(9), 11404–11411 (2015)ADSCrossRefGoogle Scholar
  3. Chen, J., Li, Z., Zhang, X., Xiao, J., Gong, Q.: Submicron bidirectional all-optical plasmonic switches. Sci. Rep. 3, 1451 (2013)ADSCrossRefGoogle Scholar
  4. Chu, H.-S., Gan, C.H.: Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett. 102(23), 231107 (2013)ADSCrossRefGoogle Scholar
  5. Dash, J.N., Jha, R.: Highly sensitive D shaped PCF sensor based on SPR for near IR. Opt. Quantum Electron. 48(2), 1–7 (2016)CrossRefGoogle Scholar
  6. Ebbesen, T.W., Lezec, H.J., Ghaemi, H., Thio, T., Wolff, P.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668), 667–669 (1998)ADSCrossRefGoogle Scholar
  7. Gu, M., Bai, P., Chu, H.S., Li, E.-P.: Design of subwavelength CMOS compatible plasmonic photodetector for nano-electronic-photonic integrated circuits. IEEE Photonics Technol. Lett. 24(6), 515–517 (2012)ADSCrossRefGoogle Scholar
  8. Hadadi, T., Naser-Moghadasi, M., Arezoomand, A.S., Zarrabi, F.B.: Sub wavelength plasmonic nano-antenna with modified ring structure for multi resonance application and circular polarization. Opt. Quantum Electron. 48(2), 1–9 (2016)CrossRefGoogle Scholar
  9. Janjan, B., Zarifkar, A., Miri, M.: Ultra-compact high-speed electro-optical modulator with extremely low energy consumption based on polymer-filled hybrid plasmonic waveguide. Plasmonics 11(2), 509–514 (2016)CrossRefGoogle Scholar
  10. Karar, A., Das, N., Tan, C.L., Alameh, K., Lee, Y.T.: Design of high-sensitivity plasmonics-assisted GaAs metal-semiconductor-metal photodetectors. In: 7th International Symposium on High-capacity Optical Networks and Enabling Technologies 2010, pp. 138–142. IEEEGoogle Scholar
  11. Lee, H.C., Van Zeghbroeck, B.: A novel high-speed silicon MSM photodetector operating at 830 nm wavelength. IEEE Electron Device Lett. 16(5), 175–177 (1995)ADSCrossRefGoogle Scholar
  12. Li, X., Yu, S., Kumar, A.: A surface-emitting distributed-feedback plasmonic laser. Appl. Phys. Lett. 95(14), 141114 (2009)ADSCrossRefGoogle Scholar
  13. Masouleh, F.F., Das, N., Mashayekhi, H.R.: Assessment of amplifying effects of ridges spacing and height on nano-structured MSM photo-detectors. Opt. Quantum Electron. 47(2), 193–201 (2015a)CrossRefGoogle Scholar
  14. Masouleh, F.F., Das, N., Rozati, S.M.: Optimal subwavelength design for efficient light trapping in central slit of plasmonics-based metal-semiconductor-metal photodetector. Opt. Quantum Electron. 47(6), 1477–1485 (2015b)CrossRefGoogle Scholar
  15. Muhammad, M.H., Hameed, M.F.O., Obayya, S.: Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt. Quantum Electron. 47(6), 1487–1494 (2015)CrossRefGoogle Scholar
  16. Oulton, R.F.: Surface plasmon lasers: sources of nanoscopic light. Mater. Today 15(1), 26–34 (2012)CrossRefGoogle Scholar
  17. Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic press, Cambridge (1998)Google Scholar
  18. Raether, H.: Surface plasmons on smooth surfaces. Springer, Berlin (1988)CrossRefGoogle Scholar
  19. Schröter, U., Heitmann, D.: Surface-plasmon-enhanced transmission through metallic gratings. Phys. Rev B 58(23), 15419 (1998)ADSCrossRefGoogle Scholar
  20. Sharaf, R., Daneshmandi, O., Ghayour, R., Alighanbari, A.: A new GaAs metal-semiconductor-metal photodetector based on hybrid plasmonic structure to improve the optical and electrical responses. Plasmonics 11(2), 441–448 (2016)CrossRefGoogle Scholar
  21. Srivastava, T., Purkayastha, A., Jha, R.: Graphene based surface plasmon resonance gas sensor for terahertz. Opt. Quantum Electron. 48(6), 1–11 (2016)CrossRefGoogle Scholar
  22. Wang, D.-W., Zhou, H.-T., Guo, M.-J., Zhang, J.-X., Evers, J., Zhu, S.-Y.: Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110(9), 093901 (2013)ADSCrossRefGoogle Scholar
  23. White, J.S., Veronis, G., Yu, Z., Barnard, E.S., Chandran, A., Fan, S., Brongersma, M.L.: Extraordinary optical absorption through subwavelength slits. Opt. Lett. 34(5), 686–688 (2009)ADSCrossRefGoogle Scholar
  24. Yousefi, M., Alighanbari, A.: Random plasmonic nanowire gratings for enhanced light absorption in organic solar cells. Plasmonics 10(6), 1751–1759 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Faculty of Electrical and Computer EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations