Passively Q-switched and mode-locked fiber laser research based on graphene saturable absorbers

Article

Abstract

We introduce a saturable absorber by coating double graphene films on a fusion stretched microfiber waveguide, compare with employing graphene films sandwiched between fiber ferrules that stable Q-switched pulse disappeared at 240 mW pump, it shows feasibility for improved Q-switching operation at higher optical damage threshold (up to 600 mW), repetition rate increased from 50.38 to 73.06 kHz and pulse energy from 76.82 to 93.76 nJ, as pump power change from 300 to 500 mW. And our laser produced 1.94 ps mode-locked pulse at ~1560 nm by GMF. Bilayer chemical vapor deposition synthesized graphene was used to enhance the evanescent interaction with the microfiber.

Keywords

Q-switching pulse Graphene Mode-locked laser Microfiber 

Notes

Acknowledgements

The authors acknowledge funding from the International Science and Technology Cooperation Project (No. 2014***10780), the National Science Foundation of China (Nos. 61505162, 61275105), the Foundation of the Education Committee of Shaanxi Province (No. 14JK1756), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JQ6059) and the Science Foundation of Northwest University (No. 13NW14).

References

  1. Bao, Q., Zhang, H., Wang, Y.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009)CrossRefGoogle Scholar
  2. Bao, Q., Zhang, H., Yang, J.: Ultrafast photonics: graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20, 782–791 (2010)CrossRefGoogle Scholar
  3. Birks, T.A., Li, Y.W.J.: Shape of fiber tapers. Lightwave Technol. 10, 432–438 (1992)ADSCrossRefGoogle Scholar
  4. Cao, W.J., Wang, H.Y., Luo, A.P.: Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser. Laser Phys. Lett. 9, 54–58 (2012)ADSCrossRefGoogle Scholar
  5. Chen, X.D., Mao, Q.H., Sun, Q.: An all-fiber gas Raman light source based on a hydrogen-filled hollow-core photonic crystal fiber pumped with a Q-switched fiber laser. Chin. Phys. Lett. 28, 74201–74204 (2011)CrossRefGoogle Scholar
  6. Dvoyrin, V.V., Mashinsky, V.M., Dianov, E.M.: Yb–Bi pulsed fiber lasers. Opt. Lett. 32, 451–453 (2007)ADSCrossRefGoogle Scholar
  7. Eichhorn, M.: Pulsed 2 μm fiber lasers for direct and pumping applications in defence and security. Proc. SPIE Int. Soc. Opt. Eng. 7836, 783609 (2010)Google Scholar
  8. Engel, T.: Optical and acoustical monitoring of material processing with Q-switched Nd:YAG and excimer laser radiation. Proc. SPIE Int. Soc. Opt. Eng. 2246, 16–24 (1994)ADSGoogle Scholar
  9. Filippov, V.N., Starodumov, A.N., Kir’yanov, A.V.: All-fiber passively Q-switched low-threshold erbium laser. Opt. Lett. 26, 343–345 (2001)Google Scholar
  10. Hisyam, M.B., Rusdi, M.F., Latiff, A.A., Harun, S.W.: PMMA-doped CdSe quantum dots as saturable absorber in a Q-switched all-fiber laser. Chin. Opt. Lett. 14, 67–71 (2016)CrossRefGoogle Scholar
  11. Huang, J.Y., Huang, W.C., Zhuang, W.Z.: High-pulse-energy, passively Q-switched Yb-doped fiber laser with AlGaInAs quantum wells as a saturable absorber. Opt. Lett. 34, 2360–2362 (2009)ADSCrossRefGoogle Scholar
  12. Huang, P.L., Lin, S.C., Yeh, C.Y.: Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express 20, 2460 (2012)ADSCrossRefGoogle Scholar
  13. Kashiwagi, K., Yamashita, S., Set, S.Y.: In-situ monitoring of optical deposition of carbon nanotubes onto fiber end. Opt. Express 17, 5711–5715 (2009)ADSCrossRefGoogle Scholar
  14. Keller, U.: Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003)ADSCrossRefGoogle Scholar
  15. Kim, H., Cho, J., Jang, S.Y.: Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett. 98, 831 (2011)Google Scholar
  16. Kisel, V.E., Gorbachenya, K.N., Yasukevich, A.S.: Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser. Opt. Lett. 37, 2745–2747 (2012)ADSCrossRefGoogle Scholar
  17. Kobtsev, S.M., Kukarin, S.V., Fedotov, Y.S.: High-energy Q-switched fiber laser based on the side-pumped active fiber. Laser Phys. 18, 1230–1233 (2008)ADSCrossRefGoogle Scholar
  18. Kurkov, A.S., Sholokhov, E.M., Medvedkov, O.I.: All fiber Yb–Ho pulsed laser. Laser Phys. Lett. 6, 135–138 (2009)ADSCrossRefGoogle Scholar
  19. Lin, G.R., Lin, Y.C.: Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser. Laser Phys. Lett. 8, 880–886 (2011)ADSCrossRefGoogle Scholar
  20. Lin, Y.H., Chi, Y.C., Lin, G.R.: Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser. Laser Phys. Lett. 10, 055105 (2013a)ADSCrossRefGoogle Scholar
  21. Lin, Y.H., Yang, C.Y., Liou, J.H.: Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express 21, 16763–16776 (2013b)ADSCrossRefGoogle Scholar
  22. Liu, W., Youlun, J., Dai, T., Liwei, X., Yuan, J., Yang, C., Yao, B., Duan, X.: Actively Q-switched ring Tm-doped fiber laser with free space structure. Chin. Opt. Lett. 9, 41–43 (2016)CrossRefGoogle Scholar
  23. Luo, Z.Q., Zhou, M., Weng, J.: Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 35, 3709 (2010)ADSCrossRefGoogle Scholar
  24. Luo, Z., Zhou, M., Wu, D.J.: Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers. Lightwave Technol. 29, 2732–2739 (2011)ADSCrossRefGoogle Scholar
  25. Martinez, A., Fuse, K., Xu, B.: Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. Opt. Express 18, 23054–23061 (2010)ADSCrossRefGoogle Scholar
  26. Maus, M., Rousseau, E., Cotlet, M.: New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation. Rev. Sci. Instrum. 72, 36–40 (2000)ADSCrossRefGoogle Scholar
  27. Nair, R.R., Blake, P., Grigorenko, A.N.: Universal dynamic conductivity and quantized visible opacity of suspended graphene. Eprint Arxiv. 0803, 3718 (2008)Google Scholar
  28. Nicholson, J.W., Windeler, R.S., Digiovanni, D.J.: Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express 15, 9176–9183 (2007)ADSCrossRefGoogle Scholar
  29. Novoselov, K.S., Geim, A.K., Morozov, S.V.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  30. Pan, L., Utkin, I., Fedosejevs, R.: Passively Q -switched ytterbium-doped double-clad fiber laser with a Cr4+:YAG saturable absorber. IEEE Photonics Technol. Lett. 19, 1979–1981 (2007)ADSCrossRefGoogle Scholar
  31. Peng, K.J., Wu, C.L., Lin, Y.H.: Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature. J. Mater. Chem. C 1, 3862–3870 (2013)CrossRefGoogle Scholar
  32. Sholokhov, E.M., Marakulin, A.V., Kurkov, A.S.: All-fiber Q-switched holmium laser. Laser Phys. Lett. 8, 382–385 (2011)ADSCrossRefGoogle Scholar
  33. Song, Y.W., Jang, S.Y., Han, W.S.: Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 96, 051122 (2010)ADSCrossRefGoogle Scholar
  34. Van Gemert, M.J.C., Welch, A.J.: Time constants in thermal laser medicine. Lasers Surg. Med. 9, 405–421 (1989)CrossRefGoogle Scholar
  35. Yang, C.Y., Wu, C.L., Lin, Y.H.: Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers. Opt. Mater. Express 3, 1893–1905 (2013)CrossRefGoogle Scholar
  36. Zhang, H., Tang, D.Y., Zhao, L.M.: Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 17, 17630–17635 (2009)ADSCrossRefGoogle Scholar
  37. Zhou, D.P., Wei, L., Dong, B.: Tunable passively, Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber. IEEE Photonics Technol. Lett. 22, 9–11 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics and Photon-TechnologyNorthwest UniversityXi’anChina
  2. 2.Institute of Microelectronics and Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and TechnologyLanzhou UniversityLanzhouChina

Personalised recommendations