Skip to main content
Log in

Improvement of minority carrier collection and quantum efficiency in graphene planar silicon solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Graphene planar silicon heterojunction solar cells were investigated using 2D physics-based TCAD simulation. A planar structure consisting of graphene layer as the hole transport material, and n-type silicon as substrate is simulated. Process modeling has been carried out especially for highly boron diffusion. Using this model, the effect of the highly doped surface inverse region located as 0.08, 0.22, 0.35 μm on the photovoltaic performance has been studied. The obtained JV characteristic is analyzed to study effects of the inverse region depth and doping concentration on Schottky junction modification. The proposed design proves to be highly efficient in 0.2 h annealing, which provides a new platform to further enhance the performance of graphene planar solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Di Bartolomeo, A.: Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016)

    Article  MathSciNet  Google Scholar 

  • Eldlio, M., Ma, Y.Q., Maeda, H., Cada, M.: A long-range hybrid THz plasmonic waveguide with low attenuation loss. Infrared Phys. Technol. 80, 93–99 (2017)

    Article  ADS  Google Scholar 

  • Fan, G., Zhu, H., Wang, K., et al.: Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl. Mater. Interfaces 3(3), 721–725 (2011)

    Article  Google Scholar 

  • Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.-J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Ponomarenko, L.A., Geim, A.K., Novoselov, K.S., Mishchenko, A.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2013)

    Article  ADS  Google Scholar 

  • Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., Kelly, P.J.: Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008)

    Article  ADS  Google Scholar 

  • Guo, N., Hu, W., Jiang, T., Gong, F., Luo, W., Qiu, W., Wang, P., Liu, L., Wu, S., Liao, L., Chen, X., Lu, W.: High-quality infrared imaging with graphene photodetectors at room temperature. Nanoscale 8(35), 16065–16072 (2016)

    Article  Google Scholar 

  • He, Q., Shixin, W., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., Zhang, H.: Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6), 5038–5044 (2011)

    Article  Google Scholar 

  • Ho, P.H., Liou, Y.T., Chuang, C.H., et al.: Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv. Mater. 27(10), 1724–1729 (2015)

    Article  Google Scholar 

  • Kim, H.S., Kumar, M.D., Kim, H., et al.: Increased spectral sensitivity of Si photodetector by surface plasmon effect of Ag nanowires. Infrared Phys. Technol. 76, 621–625 (2016)

    Article  ADS  Google Scholar 

  • Kuang, Y., Liu, Y., Ma, Y., Hong, X., Yang, X., Feng, J.: Theoretical study on graphene silicon heterojunction solar cell. J. Nanoelectron. Optoelectron. 10(5), 611–615 (2015)

    Article  Google Scholar 

  • Kuang, Y., Zhang, D., Ma, Y., Liu, Y., Shao, Z., Hong, X., Yang, X., Feng, J.: Effect of near surface inverse doping on graphene silicon heterojunction solar cell. Opt. Quantum Electron. 48(3), 1–9 (2016)

    Article  Google Scholar 

  • Li, X., Xie, D., Park, H., Zhu, M., Zeng, T.H., Wang, K., Wei, J., Wu, D., Kong, J., Zhu, H.: Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale 5(5), 1945–1948 (2013)

    Article  ADS  Google Scholar 

  • Liu, Y., Wang, X., Chi, F.: Non-magnetic doping induced a high spin-filter efficiency and large spin Seebeck effect in zigzag graphene nanoribbons. J. Mater. Chem. C 1(48), 8046–8051 (2013)

    Article  Google Scholar 

  • Long, M., Liu, E., Wang, P., Gao, A., Xia, H., Luo, W., Wang, B., Zeng, J., Fu, Y., Xu, K., Zhou, W., Lv, Y., Yao, S., Lu, M., Chen, Y., Ni, Z., You, Y., Zhang, X., Qin, S., Shi, Y., Hu, W., Xing, D., Miao, F.: Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016)

    Article  ADS  Google Scholar 

  • Luo, L., Xie, C., Wang, X., Yu, Y., Wu, C., Hu, H., Zhou, K., Zhang, X., Jie, J.: Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 9, 112–120 (2014)

    Article  Google Scholar 

  • Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard, A.F.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12(6), 2745–2750 (2012)

    Article  ADS  Google Scholar 

  • Miao, J., Hu, W., Guo, N., Lu, Z., Liu, X., Liao, L., Chen, P., Jiang, T., Wu, S., Ho, J.C., Wang, L., Chen, X., Lu, W.: High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8), 936–942 (2015)

    Article  Google Scholar 

  • Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B.R., Hebard, A.F.: Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes. Phys. Rev. X 2(1), 1–9 (2012)

  • Wang, Y., Ding, K., Sun, B., Lee, S.-T., Jie, J.: Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 9(1), 72–93 (2016)

    Article  Google Scholar 

  • Wu, Y., Zhang, X., Jie, J., Xie, C., Zhang, X., Sun, B., Wang, Y., Gao, P.: Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J. Phys. Chem. C 117(23), 11968–11976 (2013)

    Article  Google Scholar 

  • Xie, C., Lv, P., Nie, B., et al.: Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 99(13), 133113 (2011)

    Article  ADS  Google Scholar 

  • Xu, Q., Zhao, X., Li, X., Deng, H., Yan, H., Yang, L., Di, W., Luo, H., Neumann, N.: 3D-printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect. Infrared Phys. Technol. 76, 111–115 (2016)

    Article  ADS  Google Scholar 

  • Zhong, H., Xu, K., Liu, Z., Xu, G., Shi, L., Fan, Y., Wang, J., Ren, G., Yang, H.: Charge transport mechanisms of graphene/semiconductor Schottky barriers: a theoretical and experimental study. J. Appl. Phys. 115(1), 013701 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project was supported by research fund of Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology (No. SKLPSTKF201505), Suzhou Industry Technological Innovation (No. SYG201602), Changshu Industry Technological Innovation (No. CQ201602), and National Natural Science Foundation of China (Grant Nos. 61674022, 61404012, and 61306122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices 2016.

Guest edited by Yuh-Renn Wu, Weida Hu, Slawomir Sujecki, Silvano Donati, Matthias Auf der Maur and Mohamed Swillam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y., Ma, Y., Xu, J. et al. Improvement of minority carrier collection and quantum efficiency in graphene planar silicon solar cell. Opt Quant Electron 49, 144 (2017). https://doi.org/10.1007/s11082-017-0977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0977-8

Keywords

Navigation