Advertisement

Improvement of minority carrier collection and quantum efficiency in graphene planar silicon solar cell

  • Yawei Kuang
  • Yulong Ma
  • Jian Xu
  • Yushen Liu
  • Debao Zhang
  • Xuekun Hong
  • Xifeng Yang
  • Jinfu Feng
Article
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016

Abstract

Graphene planar silicon heterojunction solar cells were investigated using 2D physics-based TCAD simulation. A planar structure consisting of graphene layer as the hole transport material, and n-type silicon as substrate is simulated. Process modeling has been carried out especially for highly boron diffusion. Using this model, the effect of the highly doped surface inverse region located as 0.08, 0.22, 0.35 μm on the photovoltaic performance has been studied. The obtained JV characteristic is analyzed to study effects of the inverse region depth and doping concentration on Schottky junction modification. The proposed design proves to be highly efficient in 0.2 h annealing, which provides a new platform to further enhance the performance of graphene planar solar cell.

Keywords

Minority carrier Boron doped Graphene silicon Schottky barrier 

Notes

Acknowledgements

The project was supported by research fund of Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology (No. SKLPSTKF201505), Suzhou Industry Technological Innovation (No. SYG201602), Changshu Industry Technological Innovation (No. CQ201602), and National Natural Science Foundation of China (Grant Nos. 61674022, 61404012, and 61306122).

References

  1. Di Bartolomeo, A.: Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016)MathSciNetCrossRefGoogle Scholar
  2. Eldlio, M., Ma, Y.Q., Maeda, H., Cada, M.: A long-range hybrid THz plasmonic waveguide with low attenuation loss. Infrared Phys. Technol. 80, 93–99 (2017)ADSCrossRefGoogle Scholar
  3. Fan, G., Zhu, H., Wang, K., et al.: Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl. Mater. Interfaces 3(3), 721–725 (2011)CrossRefGoogle Scholar
  4. Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.-J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Ponomarenko, L.A., Geim, A.K., Novoselov, K.S., Mishchenko, A.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2013)ADSCrossRefGoogle Scholar
  5. Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., Kelly, P.J.: Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008)ADSCrossRefGoogle Scholar
  6. Guo, N., Hu, W., Jiang, T., Gong, F., Luo, W., Qiu, W., Wang, P., Liu, L., Wu, S., Liao, L., Chen, X., Lu, W.: High-quality infrared imaging with graphene photodetectors at room temperature. Nanoscale 8(35), 16065–16072 (2016)CrossRefGoogle Scholar
  7. He, Q., Shixin, W., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., Zhang, H.: Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6), 5038–5044 (2011)CrossRefGoogle Scholar
  8. Ho, P.H., Liou, Y.T., Chuang, C.H., et al.: Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv. Mater. 27(10), 1724–1729 (2015)CrossRefGoogle Scholar
  9. Kim, H.S., Kumar, M.D., Kim, H., et al.: Increased spectral sensitivity of Si photodetector by surface plasmon effect of Ag nanowires. Infrared Phys. Technol. 76, 621–625 (2016)ADSCrossRefGoogle Scholar
  10. Kuang, Y., Liu, Y., Ma, Y., Hong, X., Yang, X., Feng, J.: Theoretical study on graphene silicon heterojunction solar cell. J. Nanoelectron. Optoelectron. 10(5), 611–615 (2015)CrossRefGoogle Scholar
  11. Kuang, Y., Zhang, D., Ma, Y., Liu, Y., Shao, Z., Hong, X., Yang, X., Feng, J.: Effect of near surface inverse doping on graphene silicon heterojunction solar cell. Opt. Quantum Electron. 48(3), 1–9 (2016)CrossRefGoogle Scholar
  12. Li, X., Xie, D., Park, H., Zhu, M., Zeng, T.H., Wang, K., Wei, J., Wu, D., Kong, J., Zhu, H.: Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale 5(5), 1945–1948 (2013)ADSCrossRefGoogle Scholar
  13. Liu, Y., Wang, X., Chi, F.: Non-magnetic doping induced a high spin-filter efficiency and large spin Seebeck effect in zigzag graphene nanoribbons. J. Mater. Chem. C 1(48), 8046–8051 (2013)CrossRefGoogle Scholar
  14. Long, M., Liu, E., Wang, P., Gao, A., Xia, H., Luo, W., Wang, B., Zeng, J., Fu, Y., Xu, K., Zhou, W., Lv, Y., Yao, S., Lu, M., Chen, Y., Ni, Z., You, Y., Zhang, X., Qin, S., Shi, Y., Hu, W., Xing, D., Miao, F.: Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016)ADSCrossRefGoogle Scholar
  15. Luo, L., Xie, C., Wang, X., Yu, Y., Wu, C., Hu, H., Zhou, K., Zhang, X., Jie, J.: Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 9, 112–120 (2014)CrossRefGoogle Scholar
  16. Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard, A.F.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12(6), 2745–2750 (2012)ADSCrossRefGoogle Scholar
  17. Miao, J., Hu, W., Guo, N., Lu, Z., Liu, X., Liao, L., Chen, P., Jiang, T., Wu, S., Ho, J.C., Wang, L., Chen, X., Lu, W.: High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8), 936–942 (2015)CrossRefGoogle Scholar
  18. Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B.R., Hebard, A.F.: Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes. Phys. Rev. X 2(1), 1–9 (2012)Google Scholar
  19. Wang, Y., Ding, K., Sun, B., Lee, S.-T., Jie, J.: Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 9(1), 72–93 (2016)CrossRefGoogle Scholar
  20. Wu, Y., Zhang, X., Jie, J., Xie, C., Zhang, X., Sun, B., Wang, Y., Gao, P.: Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J. Phys. Chem. C 117(23), 11968–11976 (2013)CrossRefGoogle Scholar
  21. Xie, C., Lv, P., Nie, B., et al.: Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 99(13), 133113 (2011)ADSCrossRefGoogle Scholar
  22. Xu, Q., Zhao, X., Li, X., Deng, H., Yan, H., Yang, L., Di, W., Luo, H., Neumann, N.: 3D-printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect. Infrared Phys. Technol. 76, 111–115 (2016)ADSCrossRefGoogle Scholar
  23. Zhong, H., Xu, K., Liu, Z., Xu, G., Shi, L., Fan, Y., Wang, J., Ren, G., Yang, H.: Charge transport mechanisms of graphene/semiconductor Schottky barriers: a theoretical and experimental study. J. Appl. Phys. 115(1), 013701 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yawei Kuang
    • 1
    • 2
  • Yulong Ma
    • 1
  • Jian Xu
    • 1
  • Yushen Liu
    • 1
  • Debao Zhang
    • 1
  • Xuekun Hong
    • 1
  • Xifeng Yang
    • 1
  • Jinfu Feng
    • 1
  1. 1.School of Physics and Electronic EngineeringChangshu Institute of TechnologyChangshuChina
  2. 2.Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and TechnologyChangzhou UniversityChangzhouChina

Personalised recommendations