Advertisement

TEC power consumption in laser array packaging

  • Jinwei Gao
  • Ximeng Han
  • Xingyu Lei
  • Yonglin Yu
Article
  • 105 Downloads

Abstract

In this paper, we developed a 3-D thermal model of a modulator- and amplifier-integrated distributed feedback laser array with detailed heat sources based on finite element method. Thermoelectric cooler (TEC) power consumption in the laser array package was analyzed and we found that it was severe in high temperature environment. To reduce the TEC power consumption, circumstances of using different submount materials and using different stages of TECs were simulated. In hot environment, the laser array using an AlN–SiC two-stage submount has a decrease of 48% in the TEC power consumption comparing with an AlN–kovar submount. And the TEC power consumption can be reduced up to 39.7% by using a two-stage TEC instead of a single one. The thermal performance of the laser array can be improved by selecting proper submount materials and using suitable TECs. These results might be useful for optoelectronic device packaging with a similar thermal system.

Keywords

TEC Laser array Thermal management Semiconductor device packaging FEM 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61675073, in part by the National High Technology Developing Program of China under Grant No. 2013AA014503.

References

  1. Coldren, L., Nicholes, S.C., Johansson, L., Ristic, S., Guzzon, R.S., Norberg, E.J., Krishnamachari, U.: High performance InP-based photonic ICsA tutorial. J. Lightwave Technol. 29(4), 554–570 (2011)ADSCrossRefGoogle Scholar
  2. Connor, J.O., Punch, J.: The thermal behavior of a flip-chip laser array within a photonics integrated circuit (PIC). In: 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 325–332. IEEE (2012)Google Scholar
  3. Fontaine, M., Paris, B., Grard, E., Letteron, L., Massiot, M., Tessier, G.: Thermal characterization of a laser diode and its peltier cooler for optical communications: measurements and predictive modeling. IEEE Trans. Compon. Packag. Manuf. Technol. 3(8), 1342–1347 (2013)CrossRefGoogle Scholar
  4. Gilardi, G., Yao, W., Haghighi, H.R., Smit, M.K., Wale, M.J.: Substrate thickness effects on thermal crosstalk in InP-based photonic integrated circuits. J. Lightwave Technol. 32(17), 3061–3066 (2014a)ADSCrossRefGoogle Scholar
  5. Gilardi, G., Yao, W., Haghighi, H.R., Leijtens, X.J., Smit, M.K., Wale, M.: Deep trenches for thermal crosstalk reduction in InP-based photonic integrated circuits. J. Lightwave Technol. 32(24), 4262–4268 (2014b)ADSCrossRefGoogle Scholar
  6. Hickey, S.A., Punch, J., Daly, J., Jeffers, N.: The influence of heat spreading on the thermal control of photonics integrated circuits. In: ASME 2011 International Mechanical Engineering Congress and Exposition, pp. 35–42. American Society of Mechanical Engineers (2011)Google Scholar
  7. Jang, F., Lee, S.-L.: Side-mode suppression and wavelength controltolerance for sampled grating based DWDM laser arrays. Opt. Quantum Electron. 35(15), 1295–1309 (2003)CrossRefGoogle Scholar
  8. Kim, I., Kang, B.-K., Bae, Y.-D., Park, B., Lee, S.-M., Kim, Y.H., Jang, D.-H.: Design of amplifier-and modulator-integrated laser diode for 10-Gb/s 80-km transmission. IEEE J. Sel. Top. Quantum Electron. 11(2), 323–328 (2005)CrossRefGoogle Scholar
  9. Klepser, B., Hillmer, H.: Investigations of thermal crosstalk in laser arrays for WDM applications. J. Lightwave Technol. 16(10), 1888–1894 (1998)ADSCrossRefGoogle Scholar
  10. Labudovic, M., Li, J.: Modeling of TE cooling of pump lasers. IEEE Trans. Compon. Packag. Technol. 27(4), 724–730 (2004)CrossRefGoogle Scholar
  11. Lee, J.J., Kang, H.S., Koh, J.S.: Prediction of TEC power consumption for cooled laser diode module. In: The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004. LEOS 2004, pp. 657–658. IEEE (2004)Google Scholar
  12. Li, X.: Optoelectronic Devices: Design, Modeling, and Simulation. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  13. Liu, X., Hu, M.H., Caneau, C.G., Bhat, R., Zah, C.-E.: Thermal management strategies for high power semiconductor pump lasers. IEEE Trans. Compon. Packag. Technol. 29(2), 268–276 (2006)CrossRefGoogle Scholar
  14. Luo, Z.: A simple method to estimate the physical characteristics of a thermoelectric cooler from vendor datasheets. Electronics cooling 14(3), 22–27 (2008)Google Scholar
  15. Mathews, I., Abdullaev, A., Lei, S., Enright, R., Wallace, M., Donegan, J.: Reducing thermal crosstalk in ten-channel tunable slotted-laser arrays. Opt. Express 23(18), 23380–23393 (2015)ADSCrossRefGoogle Scholar
  16. Meng, J.H., Wang, X.D., Zhang, X.X.: Transient modeling and dynamic characteristics of thermoelectric cooler. Appl. Energy 108, 340–348 (2013)CrossRefGoogle Scholar
  17. Punch, J.: Thermal challenges in photonic integrated circuits. In: 2012 13th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), pp. 1/6–6/6. IEEE (2012)Google Scholar
  18. Sasahata, Y., Saito, T., Takiguchi, T., Takagi, K., Matsumoto, K., Nagira, T., Sakuma, H., Suzuki, D., Makita, R., Takabayashi, M.: Tunable DFB laser array integrated with Mach–Zehnder modulators for 44.6 Gb/s DQPSK transmitter. IEEE J. Sel. Top. Quantum Electron. 19(4), 1501507 (2013)CrossRefGoogle Scholar
  19. Verma, A.J., Makkar, R., Chalapathi, K.: Thermal management issues in laser diode packaging. In: IEEE International Conference on Semiconductor Electronics, 2008. ICSE, pp. 398–401. IEEE (2008)Google Scholar
  20. Wang, H., Yu, Y.: Dynamic modeling of PID temperature controller in a tunable laser module and wavelength transients of the controlled laser. IEEE J. Quantum Electron. 48(11), 1424–1431 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.Wuhan Huagong Genuine Optics Tech Co., Ltd (HG Genuine)WuhanChina

Personalised recommendations