Advertisement

Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots

  • Z. Zaaboub
  • F. Hassen
  • M. Naffouti
  • X. Marie
  • R. M’ghaieth
  • H. Maaref
Article
Part of the following topical collections:
  1. Photonic Science and Engineering on the Micro/Nano Scale

Abstract

We report on the lateral transfer and thermal escape of carriers in InAs quantum dots (QDs) grown on a GaAs substrate by solid source molecular beam epitaxy by mean of photoluminescence (PL) and time-resolved PL measurements. The temperature-dependent PL spectra are discussed in terms of the inhomogeneous size distribution of the QDs and the carrier tunneling process from small to large QDs. The dependence of the photoluminescence decay time on the emission-wavelength is attributed to lateral carriers’ transfer within QDs with an interdot carrier tunneling time of 910 ps under low excitation conditions.

Keywords

Quantum dots Tunneling Photoluminescence Time resolved photoluminescence 

References

  1. Arakawa, Y., Sakaki, H.: Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982)ADSCrossRefGoogle Scholar
  2. Dai, Y.T., Fan, J.C., Chen, Y.F., Lin, R.M., Lee, S.C., Lin, H.H.: Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses. J. Appl. Phys. 82, 4489–4492 (1997)ADSCrossRefGoogle Scholar
  3. Duarte, C.A., da Silva, E.C.F., Quivy, A.A., da Silva, M.J., Martini, S., Leite, J.R., Meneses, E.A., Lauretto, E.: Influence of the temperature on the carrier capture into self-assembled InAs/GaAs quantum dots. J. Appl. Phys. 93, 6279–6283 (2003)ADSCrossRefGoogle Scholar
  4. Eble, B., Testelin, C., Desfonds, P., Bernardot, F., Balocchi, A., Amand, T., Miard, A., Lemaitre, A., Marie, X., Chamarro, M.: Hole-nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 146601–146604 (2009)ADSCrossRefGoogle Scholar
  5. Faugeron, M., Lelarge, F., Tran, M., Robert, Y., Vinet, E., Enard, A., Jacquet, J., Van Dijk, F.: High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers. IEEE J. Sel. Top. Quantum Electron. 19, 1101008–11001017 (2013)CrossRefGoogle Scholar
  6. He, J., Zhang, Y.C., Xu, B., Wang, Z.G.: Effects of seed dot layer and thin GaAs spacer layer on the structure and optical properties of upper In(Ga)As quantum dots. J. Appl. Phys. 93, 8898–8902 (2003)ADSCrossRefGoogle Scholar
  7. Ilahi, B., Nasr, O., Paquette, B., Hadj Alouane, M.H., Chauvin, N., Salem, B., Sfaxi, L., Bru-Chevalier, C., Morris, D., Ares, R., Aimez, V., Maaref, H.: Thermally activated inter-dots carriers’ transfer in InAs QDs with InGaAs underlying layer: origin and dependence on the post-growth intermixing. J. Alloy. Compd. 656, 132–137 (2016)CrossRefGoogle Scholar
  8. Imamura, K., Sugiyama, Y., Nakata, Y., Muto, S., Yokoyama, N.: New optical memory structure using self-assembled InAs quantum dots. Jpn. J. Appl. Phys. 34, L1445–L1447 (1995)ADSCrossRefGoogle Scholar
  9. Khan, M.Z.M., Ng, T.K., Lee, C.-S., Bhattacharya, P., Ooi, B.S.: Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission. Appl. Phys. Lett. 102, 091102–091104 (2013)ADSCrossRefGoogle Scholar
  10. Kong, L., Chuan Feng, Z., Wu, Z., Lu, W.: Temperature dependent and time-resolved photoluminescence studies of InAs self-assembled quantum dots with InGaAs strain reducing layer structure. J. Appl. Phys. 106, 013512–013518 (2009)ADSCrossRefGoogle Scholar
  11. Le Ru, E.C., Fack, J., Murray, R.: Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Phys. Rev. B 67, 245318–245329 (2003)ADSCrossRefGoogle Scholar
  12. Lee, K.J., Jo, B., Lee, C., Lee, I.H., Kim, J.S., Oh, D.K., Kim, J.S., Lee, S.J., Noh, S.K., Leem, J.-Y., Ryu, M.-Y.: Carrier repopulation process for spatially-ordered InAs/InAlGaAs quantum dots. J. Appl. Phys. 109, 113505–113511 (2011)ADSCrossRefGoogle Scholar
  13. Lelarge, F., Dagens, B., Renaudier, J., Brenot, R., Accard, A., Van Dijk, F., Make, D., Le Gouezigou, O., Provost, J., Poingt, F., Landreau, J., Drisse, O., Derouin, E., Rousseau, B., Pommereau, F., Guang-Hua, D.: Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm. IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007)CrossRefGoogle Scholar
  14. Liang, B.L., Wong, P.S., Pavarelli, N., Tatebayashi, J., Ochalski, T.J., Huyet, G., Huffaker, D.L.: Lateral interdot carrier transfer in an InAs quantum dot cluster grown on a pyramidal GaAs surface. Nanotechnology 22, 055706–055711 (2011)ADSCrossRefGoogle Scholar
  15. Lubyshev, D.I., Gonzalez-Borrero, P.P., Mareda Jr., E., Petitprez, E., Lascala Jr., N., Basmaji, P.: Exciton localization and temperature stability in self-organized InAs quantum dots. Appl. Phys. Lett. 68, 205–207 (1996)ADSCrossRefGoogle Scholar
  16. Mazur, YuI, Wang, ZhM, Tarasov, G.G., Xiao, M., Salamo, G.J., Tomm, J.W., Talalaev, V., Kissel, H.: Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures. Appl. Phys. Lett. 86, 63102–63104 (2005)CrossRefGoogle Scholar
  17. Nee, T.E., Wu, Y.F., Lin, R.M.: Effect of carrier hopping and relaxing on photoluminescence line shape in self-organized InAs quantum dot heterostructures. J. Vac. Sci. Technol. B. 23, 954–958 (2005)CrossRefGoogle Scholar
  18. Nee, T.E., Wu, Y.F., Cheng, C.C., Shen, H.T.: Carrier dynamics study of the temperature- and excitation-dependent photoluminescence of InAs/GaAsInAs/GaAs quantum dots. J. Appl. Phys. 99, 13506–13512 (2006)ADSCrossRefGoogle Scholar
  19. Park, Y.M., Park, Y.J., Kim, K.M., Shin, J.C., Song, J.D., Lee, J.I., Yoo, K.H.: Carrier dynamics in an InGaAs dots-in-a-well structure formed by atomic-layer epitaxy. Phys. Rev. B 70, 35322–35327 (2004)ADSCrossRefGoogle Scholar
  20. Polimeni, A., Patane, A., Henini, M., Eaves, L., Main, P.C.: Temperature dependence of the optical properties of InAs/AlyGa1−yAs self-organized quantum dots. Phys. Rev. B 59, 5064–5068 (1999)ADSCrossRefGoogle Scholar
  21. Pulizzi, F., Kent, A.J., Patane, A., Eaves, L., Henini, M.: Time-resolved photoluminescence of InAs quantum dots in a GaAs quantum well. Appl. Phys. Lett. 84, 3046–3048 (2004)ADSCrossRefGoogle Scholar
  22. Sanguinetti, S., Henini, M., Grassi Alessi, M., Capizzi, M., Frigeri, P., Franchi, S.: Carrier thermal escape and retrapping in self-assembled quantum dots. Phys. Rev. B 60, 8276–8283 (1999)ADSCrossRefGoogle Scholar
  23. Sanguinetti, S., Mano, T., Oshima, M., Tateno, T., Wakaki, M., Koguchi, N.: Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer. Appl. Phys. Lett. 81, 3067–3069 (2002)ADSCrossRefGoogle Scholar
  24. Sugawara, M., Mukai, K., Nakata, Y.: Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics. Appl. Phys. Lett. 74, 1561–1563 (1999)ADSCrossRefGoogle Scholar
  25. Tackeuchi, A., Nakata, Y., Muto, S., Sugiyama, Y., Usuki, T., Nishikawa, Y., Wada, O.: Time-resolved study of carrier transfer among InAs/GaAs multi-coupled quantum dots. Jpn. J. Appl. Phys. 34, L1439–L1441 (1995)ADSCrossRefGoogle Scholar
  26. Tarasov, G.G., Mazur, YuI, Zhuchenko, Z.Ya., Maaßdorf, A., Nickel, D., Tomm, J.W., Kissel, H., Walther, C., Masselink, W.T.: Carrier transfer in self-assembled coupled InAs/GaAs quantum dots. J. Appl. Phys 88, 7162–7170 (2000)ADSCrossRefGoogle Scholar
  27. Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)ADSCrossRefGoogle Scholar
  28. Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P.: Vertically self-organized InAs quantum box islands on GaAs (100). Phys. Rev. Lett. 75, 2542–2545 (1995)ADSCrossRefGoogle Scholar
  29. Xu, Z.Y., Lu, Z.D., Yang, X.P., Yuan, Z.L., Zhang, B.Z., Xu, J.Z.: Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates. Phys. Rev. B 54, 11528–11531 (1996)ADSCrossRefGoogle Scholar
  30. Zakharov, N.D., Werner, P., Gösele, U., Ledentsov, N.N., Bimberg, D., Cherkashin, N.A., Bert, N.A., Volovik, B.V., Ustinov, V.M., Maleev, N.A., Zhukov, A. E., Tsatsul’nikov, A.F.: Reduction of defect density in structures with InAs-GaAs quantum dots grown at low temperature for 1.55 µm Range. In: Mat. Res. Soc. Symp. Proc. vol. 672, pp. O8.5.1–O8.5.6 (2001)Google Scholar
  31. Zhang, Y.C., Huang, C.J., Liu, F.Q., Xu, B., Wu, J., Chen, Y.H., Ding, D., Jiang, W.H., Ye, X.L., Wang, Z.G.: Thermal redistribution of photocarriers between bimodal quantum dots. J. Appl. Phys. 90(4), 1973–1976 (2001)ADSCrossRefGoogle Scholar
  32. Zhang, Y.C., Pancholi, A., Stoleru, V.G.: Size-dependent radiative lifetime in vertically stacked (In, Ga)As quantum dot structures. Appl. Phys. Lett. 90, 183104–183106 (2007)ADSCrossRefGoogle Scholar
  33. Zhou, W.D., Qasaimeh, O., Phillips, J., Krishna, S., Bhattacharya, P.: Bias controlled wavelength switching in coupled cavity In0.4Ga0.6As/GaAsIn0.4Ga0.6As/GaAs self-organized quantum dot lasers. Appl. Phys. Lett. 74, 783–785 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Z. Zaaboub
    • 1
  • F. Hassen
    • 1
    • 2
  • M. Naffouti
    • 1
  • X. Marie
    • 3
  • R. M’ghaieth
    • 1
  • H. Maaref
    • 1
  1. 1.Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de MonastirUniversité de MonastirMonastirTunisia
  2. 2.Department of Physics, College of ScienceKing Khalid University of ABHA, Al-Guraigar AbhaAbhaKingdom of Saudi Arabia
  3. 3.LPCNO, INSA de ToulouseUniversité-Paul Sabatier de Toulouse-IIIToulouseFrance

Personalised recommendations